Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 3 von 4711
Zurück zur Trefferliste

High-accuracy high-mass-ratio simulations for binary neutron stars and their comparison to existing waveform models

  • The subsequent observing runs of the advanced gravitational-wave detector network will likely provide us with various gravitational-wave observations of binary neutron star systems. For an accurate interpretation of these detections, we need reliable gravitational-wave models. To test and to point out how existing models could be improved, we perform a set of high-resolution numerical relativity simulations for four different physical setups with mass ratios q = 1.25, 1.50, 1.75, 2.00, and total gravitational mass M = 2.7 M???. Each configuration is simulated with five different resolutions to allow a proper error assessment. Overall, we find approximately second-order converging results for the dominant (2,2) mode, but also the subdominant (2,1), (3,3), and (4,4) modes, while generally, the convergence order reduces slightly for an increasing mass ratio. Our simulations allow us to validate waveform models, where we find generally good agreement between state-of-the-art models and our data, and to prove that scaling relations forThe subsequent observing runs of the advanced gravitational-wave detector network will likely provide us with various gravitational-wave observations of binary neutron star systems. For an accurate interpretation of these detections, we need reliable gravitational-wave models. To test and to point out how existing models could be improved, we perform a set of high-resolution numerical relativity simulations for four different physical setups with mass ratios q = 1.25, 1.50, 1.75, 2.00, and total gravitational mass M = 2.7 M???. Each configuration is simulated with five different resolutions to allow a proper error assessment. Overall, we find approximately second-order converging results for the dominant (2,2) mode, but also the subdominant (2,1), (3,3), and (4,4) modes, while generally, the convergence order reduces slightly for an increasing mass ratio. Our simulations allow us to validate waveform models, where we find generally good agreement between state-of-the-art models and our data, and to prove that scaling relations for higher modes currently employed for binary black hole waveform modeling also apply for the tidal contribution. Finally, we also test if the current NRTidal model used to describe tidal effects is a valid description for high-mass-ratio systems. We hope that our simulation results can be used to further improve and test waveform models in preparation for the next observing runs.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Maximiliano UjevicORCiD, Alireza RashtiORCiD, Henrique Leonhard GiegORCiD, Wolfgang TichyORCiD, Tim DietrichORCiDGND
DOI:https://doi.org/10.1103/PhysRevD.106.023029
ISSN:2470-0010
ISSN:2470-0029
Titel des übergeordneten Werks (Englisch):Physical review : D, Particles, fields, gravitation, and cosmology
Verlag:American Physical Society
Verlagsort:College Park
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:26.07.2022
Erscheinungsjahr:2022
Datum der Freischaltung:24.05.2024
Band:106
Ausgabe:2
Aufsatznummer:023029
Seitenanzahl:10
Fördernde Institution:Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil; (CAPES) [88887.571346/2020-00]; Sao Paulo Research Foundation (FAPESP); [2019/26287-0]; National Science Foundation [PHY-1707227, PHY-2011729];; Samenwerkende Universitaire Reken Faciliteiten (SURF) Cooperative,; Project [2019.021]; national supercomputer HPE Apollo Hawk at the High; Performance Computing Center Stuttgart (HLRS) [44189]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.