• search hit 1 of 2
Back to Result List

Rabbit haemorrhagic disease: virus persistence and adaptation in Australia

  • In Australia, the rabbit haemorrhagic disease virus (RHDV) has been used since 1996 to reduce numbers of introduced European rabbits (Oryctolagus cuniculus) which have a devastating impact on the native Australian environment. RHDV causes regular, short disease outbreaks, but little is known about how the virus persists and survives between epidemics. We examined the initial spread of RHDV to show that even upon its initial spread, the virus circulated continuously on a regional scale rather than persisting at a local population level and that Australian rabbit populations are highly interconnected by virus-carrying flying vectors. Sequencing data obtained from a single rabbit population showed that the viruses that caused an epidemic each year seldom bore close genetic resemblance to those present in previous years. Together, these data suggest that RHDV survives in the Australian environment through its ability to spread amongst rabbit subpopulations. This is consistent with modelling results that indicated that in a largeIn Australia, the rabbit haemorrhagic disease virus (RHDV) has been used since 1996 to reduce numbers of introduced European rabbits (Oryctolagus cuniculus) which have a devastating impact on the native Australian environment. RHDV causes regular, short disease outbreaks, but little is known about how the virus persists and survives between epidemics. We examined the initial spread of RHDV to show that even upon its initial spread, the virus circulated continuously on a regional scale rather than persisting at a local population level and that Australian rabbit populations are highly interconnected by virus-carrying flying vectors. Sequencing data obtained from a single rabbit population showed that the viruses that caused an epidemic each year seldom bore close genetic resemblance to those present in previous years. Together, these data suggest that RHDV survives in the Australian environment through its ability to spread amongst rabbit subpopulations. This is consistent with modelling results that indicated that in a large interconnected rabbit meta-population, RHDV should maintain high virulence, cause short, strong disease outbreaks but show low persistence in any given subpopulation. This new epidemiological framework is important for understanding virus-host co-evolution and future disease management options of pest species to secure Australia's remaining natural biodiversity.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Nina I. Schwensow, Brian Cooke, John Kovaliski, Ron Sinclair, David Peacock, Jörns FickelORCiDGND, Simone Sommer
DOI:https://doi.org/10.1111/eva.12195
ISSN:1752-4571
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25553067
Title of parent work (English):Evolutionary applications
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Oryctolagus cuniculus; adaptation; calicivirus; rabbit haemorrhagic disease virus epidemiology
Volume:7
Issue:9
Number of pages:12
First page:1056
Last Page:1067
Funding institution:German Science Foundation (DFG) [So 428/7-1]; Institute for Zoo and Wildlife Research (IZW)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.