The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 58
Back to Result List

Nonradiative Recombination in Perovskite Solar Cells

  • Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their V-OC to values well below the Shockley-Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi-Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the V-OC of operational devices. These measurements prove that in state-of-the-art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump-probe techniques give complementary access to the interfacial recombinationPerovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their V-OC to values well below the Shockley-Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi-Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the V-OC of operational devices. These measurements prove that in state-of-the-art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump-probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome-paving the way to the thermodynamic efficiency limit.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christian Michael WolffORCiDGND, Pietro CaprioglioORCiD, Martin StolterfohtORCiD, Dieter NeherORCiDGND
DOI:https://doi.org/10.1002/adma.201902762
ISSN:0935-9648
ISSN:1521-4095
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31631441
Title of parent work (English):Advanced materials
Subtitle (German):the Role of Interfaces
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Review
Language:English
Date of first publication:2019/10/21
Publication year:2019
Release date:2020/10/25
Tag:interfacial recombination; open-circuit voltage; perovskite solar cells; photoluminescence
Volume:31
Issue:52
Number of pages:20
Funding institution:HyPerCells, a joint gradate school of the University of Potsdam; Helmholtz-Zentrum Berlin
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Hybrid Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.