• search hit 1 of 1
Back to Result List

Light-driven motion of self-propelled porous Janus particles

  • We introduce a versatile mechanism of light-driven self-propelled motion applied to porous Janus-type particles. The mechanism is based on the generation of local light-driven diffusio-osmotic (l-LDDO) flow around each single porous particle subjected to suitable irradiation conditions. The photosensitivity is introduced by a cationic azobenzene containing surfactant, which undergoes a photoisomerization reaction from a more hydrophobic trans-state to a rather hydrophilic cis-state under illumination with light. The negatively charged porous silica particles are dispersed in a corresponding aqueous solution and absorb molecules in their trans-state but expel them in their cis-state. During illumination with blue light triggering both trans-cis and cis-trans isomerization at the same time, the colloids start to move due to the generation of a steady-state diffusive flow of cis-isomers out of and trans-isomers into the particle. This is because a hemi-spherical metal cap partially sealing the colloid breaks the symmetry of the otherwiseWe introduce a versatile mechanism of light-driven self-propelled motion applied to porous Janus-type particles. The mechanism is based on the generation of local light-driven diffusio-osmotic (l-LDDO) flow around each single porous particle subjected to suitable irradiation conditions. The photosensitivity is introduced by a cationic azobenzene containing surfactant, which undergoes a photoisomerization reaction from a more hydrophobic trans-state to a rather hydrophilic cis-state under illumination with light. The negatively charged porous silica particles are dispersed in a corresponding aqueous solution and absorb molecules in their trans-state but expel them in their cis-state. During illumination with blue light triggering both trans-cis and cis-trans isomerization at the same time, the colloids start to move due to the generation of a steady-state diffusive flow of cis-isomers out of and trans-isomers into the particle. This is because a hemi-spherical metal cap partially sealing the colloid breaks the symmetry of the otherwise radially directed local flow around the particle, leading to self-propelled motion. Janus particles exhibit superdiffusive motion with a velocity of similar to 0.5 mu m/s and a persistence length of ca. 50 mu m, confined to microchannels the direction can be maintained up to 300 mu m before rotational diffusion reverts it. Particles forming dimers of different shapes can be made to travel along circular trajectories. The unique feature of this mechanism is that the strength of self-propulsion can be tuned by convenient external optical stimuli (intensity and irradiation wavelength) such that a broad variety of experimental situations can be realized in a spatiotemporal way and in situ.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:David FeldmannORCiDGND, Pooja Arya, Nino Lomadze, Alexey KopyshevORCiDGND, Svetlana SanterORCiDGND
DOI:https://doi.org/10.1063/1.5129238
ISSN:0003-6951
ISSN:1077-3118
Title of parent work (English):Applied physics letters
Publisher:American Institute of Physics
Place of publishing:Melville
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Publishing institution:Universität Potsdam
Release date:2020/09/06
Volume:115
Issue:26
Number of pages:5
Funding institution:DFGGerman Research Foundation (DFG) [SA1657/8-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.