• search hit 1 of 1
Back to Result List

Chemical and textural relations of britholite- and apatite-group minerals from hydrothermal REE mineralization at the Rodeo de los Molles deposit, Central Argentina

  • Britholite group minerals (REE,Ca)(5)[(Si,P)O-4](3)(OH,F) are widespread rare-earth minerals in alkaline rocks and their associated metasomatic zones, where they usually are minor accessory phases. An exception is the REE deposit Rodeo de los Molles, Central Argentina, where fluorbritholite-(Ce) (FBri) is the main carrier of REE and is closely intergrown with fluorapatite (FAp). These minerals reach an abundance of locally up to 75 modal% (FBri) and 20 modal% (FAp) in the vein mineralizations. The Rodeo de los Molles deposit is hosted by a fenitized monzogranite of the Middle Devonian Las Chacras-Potrerillos batholith. The REE mineralization consists of fluorbritholite-(Ce), britholite-(Ce), fluorapatite, allanite-(Ce), and REE fluorcarbonates, and is associated with hydrothermal fluorite, quartz, albite, zircon, and titanite. The REE assemblage takes two forms: irregular patchy shaped REE-rich composites and discrete cross-cutting veins. The irregular composites are more common, but here fluorbritholite-(Ce) is mostly replaced by REEBritholite group minerals (REE,Ca)(5)[(Si,P)O-4](3)(OH,F) are widespread rare-earth minerals in alkaline rocks and their associated metasomatic zones, where they usually are minor accessory phases. An exception is the REE deposit Rodeo de los Molles, Central Argentina, where fluorbritholite-(Ce) (FBri) is the main carrier of REE and is closely intergrown with fluorapatite (FAp). These minerals reach an abundance of locally up to 75 modal% (FBri) and 20 modal% (FAp) in the vein mineralizations. The Rodeo de los Molles deposit is hosted by a fenitized monzogranite of the Middle Devonian Las Chacras-Potrerillos batholith. The REE mineralization consists of fluorbritholite-(Ce), britholite-(Ce), fluorapatite, allanite-(Ce), and REE fluorcarbonates, and is associated with hydrothermal fluorite, quartz, albite, zircon, and titanite. The REE assemblage takes two forms: irregular patchy shaped REE-rich composites and discrete cross-cutting veins. The irregular composites are more common, but here fluorbritholite-(Ce) is mostly replaced by REE carbonates. The vein mineralization has more abundant and better-preserved britholite phases. The majority of britholite grains at Rodeo de los Molles are hydrothermally altered, and alteration is strongly enhanced by metamictization, which is indicated by darkening of the mineral, loss of birefringence, porosity, and volume changes leading to polygonal cracks in and around altered grains. A detailed electron microprobe study of apatite-britholite minerals from Rodeo de los Molles revealed compositional variations in fluorapatite and fluorbritholite-(Ce) consistent with the coupled substitution of REE3+ + Si4+ = Ca2+ + P5+ and a compositional gap of similar to 4 apfu between the two phases, which we interpret as a miscibility gap. Micrometer-scale intergrowths of fluorapatite in fluorbritholite-(Ce) minerals and vice versa are chemically characterized here for the first time and interpreted as exsolution textures that formed during cooling below the proposed solvus.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Melanie Lorenz, Uwe AltenbergerORCiDGND, Robert B. TrumbullORCiD, Raul Lira, Monica Graciela Lopez de LuchiORCiD, Christina GünterGND, Sascha EidnerORCiD
DOI:https://doi.org/10.2138/am-2019-6969
ISSN:0003-004X
ISSN:1945-3027
Title of parent work (English):American mineralogist : an international journal of earth and planetary materials
Publisher:Mineralogical Society of America
Place of publishing:Chantilly
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/09/27
Tag:Britholite; REE; alkaline granites; apatite; compositional gap; exsolution textures; fenite; hydrothermal alteration; miscibility gap
Volume:104
Issue:12
Number of pages:11
First page:1840
Last Page:1850
Funding institution:Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [STR 373/34-1]; Brandenburg Ministry of Sciences, Research and Cultural Affairs, Germany
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.