• Treffer 4 von 9
Zurück zur Trefferliste

Short-term drought and long-term climate legacy affect production of chemical defenses among plant ecotypes

  • Long and short-term climatic variation affect the ability of plants to simultaneously cope with increasing abiotic stress and biotic interactions. Specifically, ecotypes adapted to different climatic conditions (i.e., long-term legacy) may have to adjust their allocation to chemical defenses against enemies under acute drought (i.e., short-term response). Although several studies have addressed drought effects on chemical defense production, little is known about their intraspecific variation along resource gradients. Studying intraspecific variation is important for understanding how different environments select for defense strategies and how these may be affected directly and indirectly by changing climatic conditions. We conducted greenhouse experiments with the annual Biscutella didyma (Brassicaceae) to test the effects of long-term climatic legacy versus short-term drought stress on the concentrations of defense compounds (glucosinolates). To this aim, four ecotypes originating from a steep aridity gradient were exposed toLong and short-term climatic variation affect the ability of plants to simultaneously cope with increasing abiotic stress and biotic interactions. Specifically, ecotypes adapted to different climatic conditions (i.e., long-term legacy) may have to adjust their allocation to chemical defenses against enemies under acute drought (i.e., short-term response). Although several studies have addressed drought effects on chemical defense production, little is known about their intraspecific variation along resource gradients. Studying intraspecific variation is important for understanding how different environments select for defense strategies and how these may be affected directly and indirectly by changing climatic conditions. We conducted greenhouse experiments with the annual Biscutella didyma (Brassicaceae) to test the effects of long-term climatic legacy versus short-term drought stress on the concentrations of defense compounds (glucosinolates). To this aim, four ecotypes originating from a steep aridity gradient were exposed to contrasting water treatments. Concentrations of chemical defenses were measured separately in leaves of young (8 weeks) and old (14 weeks) plants, respectively. For young plants, ecotypes from the wettest climate (long-term legacy) as well as plants receiving high water treatments (short-term response) were better defended. A marginally significant interaction suggested that wetter ecotypes experienced a larger shift in defense production across water treatments. Older plants contained much lower glucosinolate concentrations and showed no differences between ecotypes and water treatments. Our results indicate that younger plants invest more resources into chemical defenses, possibly due to higher vulnerability to tissue loss compared to older plants. We propose that the strong response of wet ecotypes to water availability may be explained by a less pronounced adaptation to drought.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Sara Tomiolo, Johannes MetzORCiDGND, Christopher B. Blackwood, Karin Djendouci, Lorenz Henneberg, Caroline Mueller, Katja Tielboerger
DOI:https://doi.org/10.1016/j.envexpbot.2017.07.009
ISSN:0098-8472
ISSN:1873-7307
Titel des übergeordneten Werks (Englisch):Environmental and Experimental Botany
Verlag:Elsevier
Verlagsort:Oxford
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:10.07.2017
Erscheinungsjahr:2017
Datum der Freischaltung:08.04.2022
Freies Schlagwort / Tag:Brassicaceae; Climatic legacy; Glucosinolates; Gradients; Plant chemical defense; Short-term drought
Band:141
Seitenanzahl:8
Erste Seite:124
Letzte Seite:131
Fördernde Institution:German Research Foundation (DFG) [SPP 1529, TI338/11-1, TI338/11-2, MU1829/11-2]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.