• Treffer 3 von 4
Zurück zur Trefferliste

Atmospheric Predictability: Revisiting the Inherent Finite-Time Barrier

  • The accepted idea that there exists an inherent finite-time barrier in deterministically predicting atmospheric flows originates from Edward N. Lorenz’s 1969 work based on two-dimensional (2D) turbulence. Yet, known analytic results on the 2D Navier–Stokes (N-S) equations suggest that one can skillfully predict the 2D N-S system indefinitely far ahead should the initial-condition error become sufficiently small, thereby presenting a potential conflict with Lorenz’s theory. Aided by numerical simulations, the present work reexamines Lorenz’s model and reviews both sides of the argument, paying particular attention to the roles played by the slope of the kinetic energy spectrum. It is found that when this slope is shallower than −3, the Lipschitz continuity of analytic solutions (with respect to initial conditions) breaks down as the model resolution increases, unless the viscous range of the real system is resolved—which remains practically impossible. This breakdown leads to the inherent finite-time limit. If, on the other hand, theThe accepted idea that there exists an inherent finite-time barrier in deterministically predicting atmospheric flows originates from Edward N. Lorenz’s 1969 work based on two-dimensional (2D) turbulence. Yet, known analytic results on the 2D Navier–Stokes (N-S) equations suggest that one can skillfully predict the 2D N-S system indefinitely far ahead should the initial-condition error become sufficiently small, thereby presenting a potential conflict with Lorenz’s theory. Aided by numerical simulations, the present work reexamines Lorenz’s model and reviews both sides of the argument, paying particular attention to the roles played by the slope of the kinetic energy spectrum. It is found that when this slope is shallower than −3, the Lipschitz continuity of analytic solutions (with respect to initial conditions) breaks down as the model resolution increases, unless the viscous range of the real system is resolved—which remains practically impossible. This breakdown leads to the inherent finite-time limit. If, on the other hand, the spectral slope is steeper than −3, then the breakdown does not occur. In this way, the apparent contradiction between the analytic results and Lorenz’s theory is reconciled.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Tsz Yan LeungORCiD, Martin LeutbecherORCiDGND, Sebastian ReichORCiDGND, Theodore G. ShepherdORCiDGND
DOI:https://doi.org/10.1175/JAS-D-19-0057.1
ISSN:0022-4928
ISSN:1520-0469
Titel des übergeordneten Werks (Englisch):Journal of the atmospheric sciences
Verlag:American Meteorological Soc.
Verlagsort:Boston
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Erscheinungsjahr:2019
Datum der Freischaltung:29.09.2020
Freies Schlagwort / Tag:Atmosphere; Error analysis; Numerical weather prediction; Spectral analysis; Turbulence; distribution; forecasting; models
Band:76
Ausgabe:12
Seitenanzahl:10
Erste Seite:3883
Letzte Seite:3892
Fördernde Institution:Engineering and Physical Sciences Research Council Grant "EPSRC Centre for Doctoral Training in the Mathematics of Planet Earth at Imperial College London and the University of Reading" [EP/L016613/1]; European Research CouncilEuropean Research Council (ERC) [339390]; Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [CRC 1114]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.