• Treffer 3 von 19
Zurück zur Trefferliste

Positional information resolves structural variations and uncovers an evolutionarily divergent genetic locus in accessions of arabidopsis thaliana

  • Genome sequencing of closely related individuals has yielded valuable insights that link genome evolution to phenotypic variations. However, advancement in sequencing technology has also led to an escalation in the number of poor quality-drafted genomes assembled based on reference genomes that can have highly divergent or haplotypic regions. The self-fertilizing nature of Arabidopsis thaliana poses an advantage to sequencing projects because its genome is mostly homozygous. To determine the accuracy of an Arabidopsis drafted genome in less conserved regions, we performed a resequencing experiment on a similar to 371-kb genomic interval in the Landsberg erecta (Ler-0) accession. We identified novel structural variations (SVs) between Ler-0 and the reference accession Col-0 using a long-range polymerase chain reaction approach to generate an Illumina data set that has positional information, that is, a data set with reads that map to a known location. Positional information is important for accurate genome assembly and the resolutionGenome sequencing of closely related individuals has yielded valuable insights that link genome evolution to phenotypic variations. However, advancement in sequencing technology has also led to an escalation in the number of poor quality-drafted genomes assembled based on reference genomes that can have highly divergent or haplotypic regions. The self-fertilizing nature of Arabidopsis thaliana poses an advantage to sequencing projects because its genome is mostly homozygous. To determine the accuracy of an Arabidopsis drafted genome in less conserved regions, we performed a resequencing experiment on a similar to 371-kb genomic interval in the Landsberg erecta (Ler-0) accession. We identified novel structural variations (SVs) between Ler-0 and the reference accession Col-0 using a long-range polymerase chain reaction approach to generate an Illumina data set that has positional information, that is, a data set with reads that map to a known location. Positional information is important for accurate genome assembly and the resolution of SVs particularly in highly duplicated or repetitive regions. Sixty-one regions with misassembly signatures were identified from the Ler-0 draft, suggesting the presence of novel SVs that are not represented in the draft sequence. Sixty of those were resolved by iterative mapping using our data set. Fifteen large indels (> 100 bp) identified from this study were found to be located either within protein-coding regions or upstream regulatory regions, suggesting the formation of novel alleles or altered regulation of existing genes in Ler-0. We propose future genome-sequencing experiments to follow a clone-based approach that incorporates positional information to ultimately reveal haplotype-specific differences between accessions.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Alvina G. Lai, Matthew Denton-Giles, Bernd Müller-RöberORCiDGND, Jos H. M. Schippers, Paul P. Dijkwel
DOI:https://doi.org/10.1093/gbe/evr038
ISSN:1759-6653
Titel des übergeordneten Werks (Englisch):Genome biology and evolution
Verlag:Oxford Univ. Press
Verlagsort:Oxford
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2011
Erscheinungsjahr:2011
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:allelic variants; comparative genomics; drafted genomes; genome partitioning; haplotype
Band:3
Ausgabe:1-2
Seitenanzahl:14
Erste Seite:627
Letzte Seite:640
Fördernde Institution:Biotechnology and Biological Sciences Research Council [BB/F022697/1]; Massey University; Institute of Molecular Biosciences; Federal Ministry of Education and Research for Research Units for Systems Biology (BMBF FORSYS) Systems Biology Research Initiative [FKZ 0313924]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Publikationsweg:Open Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.