Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 7 von 18
Zurück zur Trefferliste

Disentangling the multi-scale effects of sea-surface temperatures on global precipitation

  • The oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between atmosphere and ocean and, thus, shed light on theThe oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST and P at annual scale (8-16 months) concentrate mainly over the Pacific Ocean, while the corresponding spatial patterns progressively disappear when moving toward longer time-scales. Published under license by AIP Publishing.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Nikoo EkhtiariGND, Ankit AgarwalORCiDGND, Norbert MarwanORCiDGND, Reik Volker DonnerORCiDGND
DOI:https://doi.org/10.1063/1.5095565
ISSN:1054-1500
ISSN:1089-7682
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31266324
Titel des übergeordneten Werks (Englisch):Chaos : an interdisciplinary journal of nonlinear science
Untertitel (Englisch):a coupled networks approach
Verlag:American Institute of Physics
Verlagsort:Melville
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Erscheinungsjahr:2019
Datum der Freischaltung:27.01.2021
Band:29
Ausgabe:6
Seitenanzahl:12
Fördernde Institution:German Research Foundation (DFG) via the International Research Training Group IRTG 1740German Research Foundation (DFG); German Research Foundation (DFG) via the Research Training Group GRK 2043/1German Research Foundation (DFG); German Federal Ministry for Education and Research (BMBF) via the BMBF Young Investigators Group CoSy-CC2: Complex Systems Approaches to Understanding Causes and Consequences of Past, Present and Future Climate ChangeFederal Ministry of Education & Research (BMBF) [01LN1306A]; Belmont Forum/JPI Climate project GOTHAM [01LP16MA]; German Academic Exchange Service (DAAD)Deutscher Akademischer Austausch Dienst (DAAD); Academy of Sciences of the Czech Republic under the DAAD Project [57154685]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.