The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 2282
Back to Result List

A guide to methods for estimating phago-mixotrophy in nanophytoplankton

  • Growing attention to phytoplankton mixotrophy as a trophic strategy has led to significant revisions of traditional pelagic food web models and ecosystem functioning. Although some empirical estimates of mixotrophy do exist, a much broader set of in situ measurements are required to (i) identify which organisms are acting as mixotrophs in real time and to (ii) assess the contribution of their heterotrophy to biogeochemical cycling. Estimates are needed through time and across space to evaluate which environmental conditions or habitats favour mixotrophy: conditions still largely unknown. We review methodologies currently available to plankton ecologists to undertake estimates of plankton mixotrophy, in particular nanophytoplankton phago-mixotrophy. Methods are based largely on fluorescent or isotopic tracers, but also take advantage of genomics to identify phylotypes and function. We also suggest novel methods on the cusp of use for phago-mixotrophy assessment, including single-cell measurements improving our capacity to estimateGrowing attention to phytoplankton mixotrophy as a trophic strategy has led to significant revisions of traditional pelagic food web models and ecosystem functioning. Although some empirical estimates of mixotrophy do exist, a much broader set of in situ measurements are required to (i) identify which organisms are acting as mixotrophs in real time and to (ii) assess the contribution of their heterotrophy to biogeochemical cycling. Estimates are needed through time and across space to evaluate which environmental conditions or habitats favour mixotrophy: conditions still largely unknown. We review methodologies currently available to plankton ecologists to undertake estimates of plankton mixotrophy, in particular nanophytoplankton phago-mixotrophy. Methods are based largely on fluorescent or isotopic tracers, but also take advantage of genomics to identify phylotypes and function. We also suggest novel methods on the cusp of use for phago-mixotrophy assessment, including single-cell measurements improving our capacity to estimate mixotrophic activity and rates in wild plankton communities down to the single-cell level. Future methods will benefit from advances in nanotechnology, micromanipulation and microscopy combined with stable isotope and genomic methodologies. Improved estimates of mixotrophy will enable more reliable models to predict changes in food web structure and biogeochemical flows in a rapidly changing world.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Beatrix E. BeisnerORCiDGND, Hans-Peter GrossartORCiDGND, Josep M. GasolGND
DOI:https://doi.org/10.1093/plankt/fbz008
ISSN:0142-7873
ISSN:1464-3774
Title of parent work (English):Journal of plankton research
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Review
Language:English
Date of first publication:2019/03/14
Publication year:2019
Release date:2021/03/23
Tag:FISH; carbon flows; flow cytometry; fluorescence; gene sequencing; isotopic methods; methods; microscopy; phagotrophy; phylotypes; phytoplankton
Volume:41
Issue:2
Number of pages:13
First page:77
Last Page:89
Funding institution:Friedrich Wilhelm Bessel Award, Humboldt Foundation (Germany); grant REMEI [CTM2015-70340-R]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Bronze Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.