• Treffer 1 von 10
Zurück zur Trefferliste

Pre-acceleration in the electron foreshock. II. oblique whistler waves

  • Thermal electrons have gyroradii many orders of magnitude smaller than the finite width of a shock, thus need to be pre-accelerated before they can cross it and be accelerated by diffusive shock acceleration. One region where pre-acceleration may occur is the inner foreshock, which upstream electrons must pass through before any potential downstream crossing. In this paper, we perform a large-scale particle-in-cell simulation that generates a single shock with parameters motivated from supernova remnants. Within the foreshock, reflected electrons excite the oblique whistler instability and produce electromagnetic whistler waves, which comove with the upstream flow and as nonlinear structures eventually reach radii of up to 5 ion-gyroradii. We show that the inner electromagnetic configuration of the whistlers evolves into complex nonlinear structures bound by a strong magnetic field around four times the upstream value. Although these nonlinear structures do not in general interact with cospatial upstream electrons, they resonate withThermal electrons have gyroradii many orders of magnitude smaller than the finite width of a shock, thus need to be pre-accelerated before they can cross it and be accelerated by diffusive shock acceleration. One region where pre-acceleration may occur is the inner foreshock, which upstream electrons must pass through before any potential downstream crossing. In this paper, we perform a large-scale particle-in-cell simulation that generates a single shock with parameters motivated from supernova remnants. Within the foreshock, reflected electrons excite the oblique whistler instability and produce electromagnetic whistler waves, which comove with the upstream flow and as nonlinear structures eventually reach radii of up to 5 ion-gyroradii. We show that the inner electromagnetic configuration of the whistlers evolves into complex nonlinear structures bound by a strong magnetic field around four times the upstream value. Although these nonlinear structures do not in general interact with cospatial upstream electrons, they resonate with electrons that have been reflected at the shock. We show that they can scatter, or even trap, reflected electrons, confining around 0.8% of the total upstream electron population to the region close to the shock where they can undergo substantial pre-acceleration. This acceleration process is similar to, yet approximately three times more efficient than, stochastic shock drift acceleration.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Paul J. MorrisORCiD, Artem BohdanORCiDGND, Martin S. WeidlORCiD, Michelle TsirouORCiD, Karol FulatORCiD, Martin PohlORCiDGND
DOI:https://doi.org/10.3847/1538-4357/acaec8
ISSN:0004-637X
ISSN:1538-4357
Titel des übergeordneten Werks (Englisch):The astrophysical journal : an international review of spectroscopy and astronomical physics
Verlag:Institute of Physics Publ.
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:08.02.2023
Erscheinungsjahr:2023
Datum der Freischaltung:22.05.2024
Band:944
Ausgabe:1
Aufsatznummer:13
Seitenanzahl:12
Fördernde Institution:DFG [PO 1508/10-1]; North-German Supercomputing Alliance (HLRN); [bbp00033]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Gold Open-Access
DOAJ gelistet
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.