• Treffer 7 von 9
Zurück zur Trefferliste

Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well

  • We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower thanWe show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • zmnr1354.pdfeng
    (2890KB)

    SHA-512 56972c0077716f1ef1aad1ec21996b4f06557778c48ac1d8f3a697af385ccf61bca29b433b5da70e5d6cb8d1678f611f6c34756a29d224091396853a8fa1c3f4

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Andrei VarykhalovORCiDGND, Friedrich FreyseORCiD, Irene AguileraORCiD, Marco BattiatoORCiD, Maxim KrivenkovORCiDGND, Dmitry MarchenkoORCiDGND, Gustav BihlmayerORCiD, Stefan Blugel, Oliver RaderORCiDGND, Jaime Sanchez-BarrigaORCiDGND
URN:urn:nbn:de:kobv:517-opus4-549892
DOI:https://doi.org/10.25932/publishup-54989
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1354)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:19.03.2020
Erscheinungsjahr:2020
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:28.03.2024
Freies Schlagwort / Tag:AG; films
Ausgabe:1
Aufsatznummer:013343
Seitenanzahl:11
Quelle:Phys. Rev. Research 2, 013343 (2020). https://doi.org/10.1103/PhysRevResearch.2.013343
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.