• search hit 4 of 15
Back to Result List

Controls of outbursts of moraine-dammed lakes in the greater Himalayan region

  • Glacial lakes in the Hindu Kush–Karakoram–Himalayas–Nyainqentanglha (HKKHN) region have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating regional susceptibility of glacial lakes has largely relied on qualitative assessments by experts, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use an inventory of 3390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We implement these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone toGlacial lakes in the Hindu Kush–Karakoram–Himalayas–Nyainqentanglha (HKKHN) region have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating regional susceptibility of glacial lakes has largely relied on qualitative assessments by experts, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use an inventory of 3390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We implement these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades regardless of the elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our probabilistic prognoses offer improvement compared to a random classification based on average GLOF frequency. Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the susceptibility of moraine-dammed lakes to GLOFs.show moreshow less

Download full text files

  • pmnr1160.pdfeng
    (4817KB)

    SHA-512875bc4d36ca012f35f8d56e8fadf27304ec84c31fc5e9d27e9ab36fe1dfe008bacca5681c09062a82202f9b8be02c07633c4e82c34bb410d539da15ac9c2b76b

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Melanie Fischer, Oliver KorupORCiDGND, Georg VehORCiDGND, Ariane WalzORCiDGND
URN:urn:nbn:de:kobv:517-opus4-522050
DOI:https://doi.org/10.25932/publishup-52205
ISSN:1866-8372
Title of parent work (German):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1160)
Publication type:Postprint
Language:English
Date of first publication:2020/11/02
Publication year:2021
Publishing institution:Universität Potsdam
Release date:2021/10/18
Article number:4145–4163
Number of pages:21
Source:The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, 2021
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.