Refine
Year of publication
Is part of the Bibliography
- yes (52)
Keywords
- Ecosystem services (3)
- climate change (3)
- ecosystem services (3)
- participatory research (3)
- social valuation (3)
- Abandonment (2)
- Africa (2)
- Atlantic-Ocean (2)
- Biodiversity (2)
- CO2 (2)
Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies.
Testing socio-cultural valuation methods of ecosystem services to explain land use preferences
(2017)
Socio-cultural valuation still emerges as a methodological field in ecosystem service (ES) research and until now lacks consistent formalisation and balanced application in ES assessments. In this study, we examine the explanatory value of ES values for land use preferences. We use 563 responses to a survey about the Pentland Hills regional park in Scotland. Specifically, we aim to (1) identify clusters of land use preferences by using a novel visualisation tool, (2) test if socio-cultural values of ESs or (3) user characteristics are linked with land use preferences, and (4) determine whether both socio-cultural values of ESs and user characteristics can predict land use preferences. Our results suggest that there are five groups of people with different land use preferences, ranging from forest and nature enthusiasts to traditionalists, multi-functionalists and recreation seekers. Rating and weighting of ESs and user characteristics were associated with different clusters. Neither socio-cultural values nor user characteristics were suitable predictors for land use preferences. While several studies have explored land use preferences by identifying socio-cultural values in the past, our findings imply that in this case study ES values inform about general perceptions but do not replace the assessment of land use preferences. (C) 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
Through changes in policy and practice, the inherent intent of the ecosystem services (ES) concept is to safeguard ecosystems for human wellbeing. While impact is intrinsic to the concept, little is known about how and whether ES science leads to impact. Evidence of impact is needed. Given the lack of consensus on what constitutes impact, we differentiate between attributional impacts (transitional impacts on policy, practice, awareness or other drivers) and consequential impacts (real, on-the-ground impacts on biodiversity, ES, ecosystem functions and human wellbeing) impacts. We conduct rigorous statistical analyses on three extensive databases for evidence of attributional impact (the form most prevalently reported): the IPBES catalogue (n = 102), the Lautenbach systematic review (n = 504) and a 5-year in-depth survey of the OPERAs Exemplars (n = 13). To understand the drivers of impacts, we statistically analyse associations between study characteristics and impacts. Our findings show that there exists much confusion with regard to defining ES science impacts, and that evidence of attributional impact is scarce: only 25% of the IPBES assessments self-reported impact (7% with evidence); in our meta-analysis of Lautenbach’s systematic review, 33% of studies provided recommendations indicating intent of impacts. Systematic impact reporting was imposed by design on the OPERAs Exemplars: 100% reported impacts, suggesting the importance of formal impact reporting. The generalised linear models and correlations between study characteristics and attributional impact dimensions highlight four characteristics as minimum baseline for impact: study robustness, integration of policy instruments into study design, stakeholder involvement and type of stakeholders involved. Further in depth examination of the OPERAs Exemplars showed that study characteristics associated with impact on awareness and practice differ from those associated with impact on policy: to achieve impact along specific dimensions, bespoke study designs are recommended. These results inform targeted recommendations for ES science to break its impact glass ceiling.
Climate change heavily impacts smallholder farming worldwide. Cross-scale vulnerability assessment has a high potential to identify nested measures for reducing vulnerability of smallholder farmers. Despite their high practical value, there are currently only limited examples of cross-scale assessments. The presented study aims at assessing the vulnerability of smallholder farmers in the Northeast of Brazil across three scales: regional, farm and field scale. In doing so, it builds on existing vulnerability indices and compares results between indices at the same scale and across scales. In total, six independent indices are tested, two at each scale. The calculated indices include social, economic and ecological indicators, based on municipal statistics, meteorological data, farm interviews and soil analyses. Subsequently, indices and overlapping indicators are normalized for intra- and cross-scale comparison. The results show considerable differences between indices across and within scales. They indicate different activities to reduce vulnerability of smallholder farmers. Major shortcomings arise from the conceptual differences between the indices. We therefore recommend the development of hierarchical indices, which are adapted to local conditions and contain more overlapping indicators for a better understanding of the nested vulnerabilities of smallholder farmers.
Ecosystem services have a significant impact on human wellbeing. While ecosystem services are frequently represented by monetary values, social values and underlying social benefits remain under explored. The purpose of this study is to assess whether and how social benefits have been explicitly addressed within socio-economic and socio-cultural ecosystem services research, ultimately allowing a better understanding between ecosystem services and human well-being. In this paper, we reviewed 115 international primary valuation studies and tested four hypotheses associated to the identification of social benefits of ecosystem services using logistic regressions. Tested hypotheses were that (1) social benefits are mostly derived in studies that assess cultural ecosystem services as opposed to other ecosystem service types, (2) there is a pattern of social benefits and certain cultural ecosystem services assessed simultaneously, (3) monetary valuation techniques go beyond expressing monetary values and convey social benefits, and (4) directly addressing stakeholder's views the consideration of social benefits in ecosystem service assessments. Our analysis revealed that (1) a variety of social benefits are valued in studies that assess either of the four ecosystem service types, (2) certain social benefits are likely to co-occur in combination with certain cultural ecosystem services, (3) of the studies that employed monetary valuation techniques, simulated market approaches overlapped most frequently with the assessment of social benefits and (4) studies that directly incorporate stakeholder's views were more likely to also assess social benefits. (C) 2016 Elsevier B.V. All rights reserved.
Mountain and upland regions provide a wide range of ecosystem services to residents and visitors. While ecosystem research in mountain regions is on the rise, the linkages between sociocultural benefits and ecological systems remain little explored. Mountainous regions close to urban areas provide numerous benefits to a large number of individuals, suggesting a high social value, particularly for cultural ecosystem services. We explored and compared visitors' valuation of ecosystem services in the Pentland Hills, an upland range close to the city of Edinburgh, Scotland, and urban green spaces within Edinburgh. Based on 715 responses to user surveys in both study areas, we identified intense use and high social value for both areas. Several ecosystem services were perceived as equally important in both areas, including many cultural ecosystem services. Significant differences were revealed in the value of physically using nature, which Pentland Hills users rated more highly than those in the urban green spaces, and of mitigation of pollutants and carbon sequestration, for which the urban green spaces were valued more highly. Major differences were further identified for preferences in future land management, with nature-oriented management preferred by about 57% of the interviewees in the Pentland Hills, compared to 31% in the urban parks. The study highlights the substantial value of upland areas in close vicinity to a city for physically using and experiencing nature, with a strong acceptance of nature conservation.
Sociocultural valuation (SCV) of ecosystem services (ES) discloses the principles, importance or preferences expressed by people towards nature. Although ES research has increasingly addressed sociocultural values in past years, little effort has been made to systematically review the components of sociocultural valuation applications for different decision contexts (i.e. awareness raising, accounting, priority setting, litigation and instrument design). In this analysis, we investigate the characteristics of 48 different sociocultural valuation applications—characterised by unique combinations of decision context, methods, data collection formats and participants—across ten European case studies. Our findings show that raising awareness for the sociocultural value of ES by capturing people’s perspective and establishing the status quo, was found the most frequent decision context in case studies, followed by priority setting and instrument development. Accounting and litigation issues were not addressed in any of the applications. We reveal that applications for particular decision contexts are methodologically similar, and that decision contexts determine the choice of methods, data collection formats and participants involved. Therefore, we conclude that understanding the decision context is a critical first step to designing and carrying out fit-for-purpose sociocultural valuation of ES in operational ecosystem management.
Niche-based species distribution models (SDMs) play a central role in studying species response to environmental change. Effective management and conservation plans for freshwater ecosystems require SDMs that accommodate hierarchical catchment ordering and provide clarity on the performance of such models across multiple scales. The scale-dependence components considered here are: (a) environment spatial structure, represented by hierarchical catchment ordering following the Strahler system; (b) analysis grain, that included 1st to 5th order catchments; and (c) response grain, the grain at which species respond most, represented by local and upstream catchment area effects. We used fish occurrence data from the Danube River Basin and various factors representing climate, land cover and anthropogenic pressures. Our results indicate that the choice of response grain local vs. upstream area effects and the choice of analysis grain, only marginally influence the performance of SDMs. Upstream effects tend to better predict fish distributions than corresponding local effects for anthropogenic and land cover factors, in particular for species sensitive to pollution. Key predictors and their relative importance are scale and species dependent. Consequently, choosing proper species dependent spatial scales and factors is imperative for effective river rehabilitation measures.
Niche-based species distribution models (SDMs) have become an essential tool in conservation and restoration planning. Given the current threats to freshwater biodiversity, it is of fundamental importance to address scale effects on the performance of niche-based SDMs of freshwater species’ distributions. The scale effects are addressed here in the context of hierarchical catchment ordering, considered as counterpart to coarsening grain-size by increasing grid-cell size. We combine fish occurrence data from the Danube River Basin, the hierarchical catchment ordering and multiple environmental factors representing topographic, climatic and anthropogenic effects to model fish occurrence probability across multiple scales. We focus on 1st to 5th order catchments. The spatial scale (hierarchical catchment order) only marginally influences the mean performance of SDMs, however the uncertainty of the estimates increases with scale. Key predictors and their relative importance are scale and species dependent. Our findings have useful implications for choosing proper species dependent spatial scales for river rehabilitation measures, and for conservation planning in areas where fine grain species data are unavailable.