• Treffer 2 von 3
Zurück zur Trefferliste

Counting homomorphisms to trees modulo a prime

  • Many important graph-theoretic notions can be encoded as counting graph homomorphism problems, such as partition functions in statistical physics, in particular independent sets and colourings. In this article, we study the complexity of #(p) HOMSTOH, the problem of counting graph homomorphisms from an input graph to a graph H modulo a prime number p. Dyer and Greenhill proved a dichotomy stating that the tractability of non-modular counting graph homomorphisms depends on the structure of the target graph. Many intractable cases in non-modular counting become tractable in modular counting due to the common phenomenon of cancellation. In subsequent studies on counting modulo 2, however, the influence of the structure of H on the tractability was shown to persist, which yields similar dichotomies. <br /> Our main result states that for every tree H and every prime p the problem #pHOMSTOH is either polynomial time computable or #P-p-complete. This relates to the conjecture of Faben and Jerrum stating that this dichotomy holds for everyMany important graph-theoretic notions can be encoded as counting graph homomorphism problems, such as partition functions in statistical physics, in particular independent sets and colourings. In this article, we study the complexity of #(p) HOMSTOH, the problem of counting graph homomorphisms from an input graph to a graph H modulo a prime number p. Dyer and Greenhill proved a dichotomy stating that the tractability of non-modular counting graph homomorphisms depends on the structure of the target graph. Many intractable cases in non-modular counting become tractable in modular counting due to the common phenomenon of cancellation. In subsequent studies on counting modulo 2, however, the influence of the structure of H on the tractability was shown to persist, which yields similar dichotomies. <br /> Our main result states that for every tree H and every prime p the problem #pHOMSTOH is either polynomial time computable or #P-p-complete. This relates to the conjecture of Faben and Jerrum stating that this dichotomy holds for every graph H when counting modulo 2. In contrast to previous results on modular counting, the tractable cases of #pHOMSTOH are essentially the same for all values of the modulo when H is a tree. To prove this result, we study the structural properties of a homomorphism. As an important interim result, our study yields a dichotomy for the problem of counting weighted independent sets in a bipartite graph modulo some prime p. These results are the first suggesting that such dichotomies hold not only for the modulo 2 case but also for the modular counting functions of all primes p.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Andreas GöbelORCiD, Gregor J. A. LagodzinskiORCiD, Karen SeidelORCiD
DOI:https://doi.org/10.1145/3460958
ISSN:1942-3454
ISSN:1942-3462
Titel des übergeordneten Werks (Englisch):ACM transactions on computation theory : TOCT / Association for Computing Machinery
Verlag:Association for Computing Machinery
Verlagsort:New York
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:23.12.2021
Erscheinungsjahr:2021
Datum der Freischaltung:05.01.2023
Freies Schlagwort / Tag:Graph homomorphisms; complexity dichotomy; modular counting
Band:13
Ausgabe:3
Aufsatznummer:19
Seitenanzahl:33
Erste Seite:1
Letzte Seite:33
Organisationseinheiten:An-Institute / Hasso-Plattner-Institut für Digital Engineering gGmbH
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Peer Review:Referiert
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.