• Treffer 1 von 3
Zurück zur Trefferliste

The role of intermetallics in stress partitioning and damage evolution of AlSil2CuMgNi alloy

  • Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnectedLoad partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Sergei EvsevleevORCiD, Tatiana MishurovaORCiDGND, Sandra CabezaORCiD, R. Koos, Igor SevostianovORCiD, Gonzales Garcés, Guillermo RequenaGND, R. Fernandez, Giovanni BrunoORCiDGND
DOI:https://doi.org/10.1016/j.msea.2018.08.070
ISSN:0921-5093
ISSN:1873-4936
Titel des übergeordneten Werks (Englisch):Materials Science and Engineering: A-Structural materials: properties, microstructure and processing
Verlag:Elsevier
Verlagsort:Lausanne
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Erscheinungsjahr:2018
Datum der Freischaltung:26.07.2021
Freies Schlagwort / Tag:Aluminum alloys; Computed tomography; Damage; Internal stress; Micromechanical modeling; Neutron diffraction
Band:736
Seitenanzahl:12
Erste Seite:453
Letzte Seite:464
Fördernde Institution:Deutsche Forschungsgemeinschaft, DFG (Germany)German Research Foundation (DFG) [BR 5199/3-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.