• search hit 1 of 1
Back to Result List

Tuning the relaxor-ferroelectric properties of Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Terpolymer films by means of thermally induced micro- and nanostructures

  • The effects of thermal processing on the micro- and nanostructural features and thus also on the relaxor-ferroelectric properties of a P(VDF-TrFE-CFE) terpolymer were investigated in detail by means of dielectric experiments, such as dielectric relaxation spectroscopy (DRS), dielectric hysteresis loops, and thermally stimulated depolarization currents (TSDCs). The results were correlated with those obtained from differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and Fourier-transform infrared spectroscopy (FTIR). The results from DRS and DSC show that annealing reduces the Curie transition temperature of the terpolymer, whereas the results from WAXD scans and FTIR spectra help to understand the shift in the Curie transition temperatures as a result of reducing the ferroelectric phase fraction, which by default exists even in terpolymers with relatively high CFE contents. In addition, the TSDC traces reveal that annealing has a similar effect on the midtemperature transition by altering the fraction ofThe effects of thermal processing on the micro- and nanostructural features and thus also on the relaxor-ferroelectric properties of a P(VDF-TrFE-CFE) terpolymer were investigated in detail by means of dielectric experiments, such as dielectric relaxation spectroscopy (DRS), dielectric hysteresis loops, and thermally stimulated depolarization currents (TSDCs). The results were correlated with those obtained from differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and Fourier-transform infrared spectroscopy (FTIR). The results from DRS and DSC show that annealing reduces the Curie transition temperature of the terpolymer, whereas the results from WAXD scans and FTIR spectra help to understand the shift in the Curie transition temperatures as a result of reducing the ferroelectric phase fraction, which by default exists even in terpolymers with relatively high CFE contents. In addition, the TSDC traces reveal that annealing has a similar effect on the midtemperature transition by altering the fraction of constrained amorphous phase at the interphase between the crystalline and the amorphous regions. Changes in the transition temperatures are in turn related to the behavior of the hysteresis curves on differently heat-treated samples. During heating, evolution of the hysteresis curves from ferroelectric to relaxor-ferroelectric, first exhibiting single hysteresis loops and then double hysteresis loops near the Curie transition of the sample, is observed. When comparing the dielectric-hysteresis loops obtained at various temperatures, we find that annealed terpolymer films show higher electric-displacement values and lower coercive fields than the nonannealed sample, irrespective of the measurement temperature, and also exhibit ideal relaxor- ferroelectric behavior at ambient temperatures, which makes them excellent candidates for applications at or near room temperature. By tailoring the annealing conditions, it has been shown that the application temperature could be increased by fine tuning the induced micro- and nanostructures.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Thulasinath Raman VenkatesanORCiDGND, David SmykallaGND, Bernd PlossORCiD, Michael WübbenhorstORCiDGND, Reimund GerhardORCiDGND
DOI:https://doi.org/10.1021/acs.macromol.2c00302
ISSN:0024-9297
ISSN:1520-5835
Title of parent work (English):Macromolecules : a publication of the American Chemical Society
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2022/06/21
Publication year:2022
Release date:2023/12/13
Tag:Annealing (metallurgy); Hysteresis; Insulators; Phase transitions; Polarization
Volume:55
Issue:13
Number of pages:15
First page:5621
Last Page:5635
Funding institution:Research Foundation-Flanders (FWO) [G0B3218N]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.