• Treffer 4 von 9
Zurück zur Trefferliste

On the expected gamma-ray emission from nearby flaring stars

  • Stellar flares have been extensively studied in soft X-rays (SXRs) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DGCVn binary star system, which triggered Swift/BAT as if it was a gamma-ray burst. In this work, we estimate the expected gamma-ray emission from DGCVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding pi(0)-decay gamma-ray emission could be detectable from stellar superflares with ground-based gamma-ray telescopes. On the other hand, the detection of gamma-ray emission implies particle densities high enough that ions suffer significantStellar flares have been extensively studied in soft X-rays (SXRs) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DGCVn binary star system, which triggered Swift/BAT as if it was a gamma-ray burst. In this work, we estimate the expected gamma-ray emission from DGCVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding pi(0)-decay gamma-ray emission could be detectable from stellar superflares with ground-based gamma-ray telescopes. On the other hand, the detection of gamma-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of gamma-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Stefan OhmORCiD, Clemens HoischenORCiDGND
DOI:https://doi.org/10.1093/mnras/stx2806
ISSN:0035-8711
ISSN:1365-2966
Titel des übergeordneten Werks (Englisch):Monthly notices of the Royal Astronomical Society
Verlag:Oxford Univ. Press
Verlagsort:Oxford
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:27.10.2018
Erscheinungsjahr:2018
Datum der Freischaltung:03.02.2022
Freies Schlagwort / Tag:radiation mechanisms: non-thermal; stars: flare; stars: individual: DGCVn-gamma rays: stars
Band:474
Ausgabe:1
Seitenanzahl:7
Erste Seite:1335
Letzte Seite:1341
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.