The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 18
Back to Result List

The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity

  • Temperature exerts a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone. The latter can be regarded as the lower bound to the seismogenic zone, thereby controlling the spatial distribution of seismicity within a lithospheric plate. As such, models of the crustal thermal field are important to understand the localisation of seismicity. Here we relate results from 3D simulations of the steady state thermal field of the Alpine orogen and its forelands to the distribution of seismicity in this seismically active area of Central Europe. The model takes into account how the crustal heterogeneity of the region effects thermal properties and is validated with a dataset of wellbore temperatures. We find that the Adriatic crust appears more mafic, through its radiogenic heat values (1.30E-06 W/m3) and maximum temperature of seismicity (600 degrees C), than the European crust (1.3-2.6E-06 W/m3 and 450 degrees C). We also show that atTemperature exerts a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone. The latter can be regarded as the lower bound to the seismogenic zone, thereby controlling the spatial distribution of seismicity within a lithospheric plate. As such, models of the crustal thermal field are important to understand the localisation of seismicity. Here we relate results from 3D simulations of the steady state thermal field of the Alpine orogen and its forelands to the distribution of seismicity in this seismically active area of Central Europe. The model takes into account how the crustal heterogeneity of the region effects thermal properties and is validated with a dataset of wellbore temperatures. We find that the Adriatic crust appears more mafic, through its radiogenic heat values (1.30E-06 W/m3) and maximum temperature of seismicity (600 degrees C), than the European crust (1.3-2.6E-06 W/m3 and 450 degrees C). We also show that at depths of < 10 km the thermal field is largely controlled by sedimentary blanketing or topographic effects, whilst the deeper temperature field is primarily controlled by the LAB topology and the distribution and parameterization of radiogenic heat sources within the upper crust.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Cameron SpoonerORCiDGND, Magdalena Scheck-WenderothORCiDGND, Mauro CacaceORCiDGND, Hans-Jürgen GötzeORCiDGND, Elco Luijendijk
DOI:https://doi.org/10.1016/j.gloplacha.2020.103288
ISSN:0921-8181
ISSN:1872-6364
Title of parent work (English):Global and planetary change
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2020/07/31
Publication year:2020
Release date:2023/04/17
Tag:Adria; Alps; Europe; seismicity; steady-state; thermal-field
Volume:193
Article number:103288
Number of pages:14
Funding institution:Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.