Evaluating temporal queries over history-aware architectural runtime models
Ausführung temporaler Anfragen über geschichtsbewusste Architektur-Laufzeitmodelle
- In model-driven engineering, the adaptation of large software systems with dynamic structure is enabled by architectural runtime models. Such a model represents an abstract state of the system as a graph of interacting components. Every relevant change in the system is mirrored in the model and triggers an evaluation of model queries, which search the model for structural patterns that should be adapted. This thesis focuses on a type of runtime models where the expressiveness of the model and model queries is extended to capture past changes and their timing. These history-aware models and temporal queries enable more informed decision-making during adaptation, as they support the formulation of requirements on the evolution of the pattern that should be adapted. However, evaluating temporal queries during adaptation poses significant challenges. First, it implies the capability to specify and evaluate requirements on the structure, as well as the ordering and timing in which structural changes occur. Then, query answers have toIn model-driven engineering, the adaptation of large software systems with dynamic structure is enabled by architectural runtime models. Such a model represents an abstract state of the system as a graph of interacting components. Every relevant change in the system is mirrored in the model and triggers an evaluation of model queries, which search the model for structural patterns that should be adapted. This thesis focuses on a type of runtime models where the expressiveness of the model and model queries is extended to capture past changes and their timing. These history-aware models and temporal queries enable more informed decision-making during adaptation, as they support the formulation of requirements on the evolution of the pattern that should be adapted. However, evaluating temporal queries during adaptation poses significant challenges. First, it implies the capability to specify and evaluate requirements on the structure, as well as the ordering and timing in which structural changes occur. Then, query answers have to reflect that the history-aware model represents the architecture of a system whose execution may be ongoing, and thus answers may depend on future changes. Finally, query evaluation needs to be adequately fast and memory-efficient despite the increasing size of the history---especially for models that are altered by numerous, rapid changes. The thesis presents a query language and a querying approach for the specification and evaluation of temporal queries. These contributions aim to cope with the challenges of evaluating temporal queries at runtime, a prerequisite for history-aware architectural monitoring and adaptation which has not been systematically treated by prior model-based solutions. The distinguishing features of our contributions are: the specification of queries based on a temporal logic which encodes structural patterns as graphs; the provision of formally precise query answers which account for timing constraints and ongoing executions; the incremental evaluation which avoids the re-computation of query answers after each change; and the option to discard history that is no longer relevant to queries. The query evaluation searches the model for occurrences of a pattern whose evolution satisfies a temporal logic formula. Therefore, besides model-driven engineering, another related research community is runtime verification. The approach differs from prior logic-based runtime verification solutions by supporting the representation and querying of structure via graphs and graph queries, respectively, which is more efficient for queries with complex patterns. We present a prototypical implementation of the approach and measure its speed and memory consumption in monitoring and adaptation scenarios from two application domains, with executions of an increasing size. We assess scalability by a comparison to the state-of-the-art from both related research communities. The implementation yields promising results, which pave the way for sophisticated history-aware self-adaptation solutions and indicate that the approach constitutes a highly effective technique for runtime monitoring on an architectural level.…
- In der modellgetriebenen Entwicklung wird die Adaptation großer Softwaresysteme mit dynamischer Struktur durch Architektur-Laufzeitmodelle ermöglicht. Ein solches Modell stellt einen abstrakten Zustand des Systems als einen Graphen von interagierenden Komponenten dar. Jede relevante Änderung im System spiegelt sich im Modell wider und löst eine Ausführung von Modellanfragen aus, die das Modell nach zu adaptierenden Strukturmustern durchsuchen. Diese Arbeit konzentriert sich auf eine Art von Laufzeitmodellen, bei denen die Ausdruckskraft des Modells und der Modellanfragen erweitert wird, um vergangene Änderungen und deren Zeitpunkt zu erfassen. Diese geschichtsbewussten Modelle und temporalen Anfragen ermöglichen eine fundiertere Entscheidungsfindung während der Adaptation, da sie die Formulierung von Anforderungen an die Entwicklung des Musters, das adaptiert werden soll, unterstützen. Die Ausführung von temporalen Anfragen während der Adaptation stellt jedoch eine große Herausforderung dar. Zunächst müssen Anforderungen an dieIn der modellgetriebenen Entwicklung wird die Adaptation großer Softwaresysteme mit dynamischer Struktur durch Architektur-Laufzeitmodelle ermöglicht. Ein solches Modell stellt einen abstrakten Zustand des Systems als einen Graphen von interagierenden Komponenten dar. Jede relevante Änderung im System spiegelt sich im Modell wider und löst eine Ausführung von Modellanfragen aus, die das Modell nach zu adaptierenden Strukturmustern durchsuchen. Diese Arbeit konzentriert sich auf eine Art von Laufzeitmodellen, bei denen die Ausdruckskraft des Modells und der Modellanfragen erweitert wird, um vergangene Änderungen und deren Zeitpunkt zu erfassen. Diese geschichtsbewussten Modelle und temporalen Anfragen ermöglichen eine fundiertere Entscheidungsfindung während der Adaptation, da sie die Formulierung von Anforderungen an die Entwicklung des Musters, das adaptiert werden soll, unterstützen. Die Ausführung von temporalen Anfragen während der Adaptation stellt jedoch eine große Herausforderung dar. Zunächst müssen Anforderungen an die Struktur sowie an die Reihenfolge und den Zeitpunkt von Strukturänderungen spezifiziert und evaluiert werden. Weiterhin müssen die Antworten auf die Anfragen berücksichtigen, dass das geschichtsbewusste Modell die Architektur eines Systems darstellt, dessen Ausführung fortlaufend sein kann, sodass die Antworten von zukünftigen Änderungen abhängen können. Schließlich muss die Anfrageausführung trotz der zunehmenden Größe der Historie hinreichend schnell und speichereffizient sein---insbesondere bei Modellen, die durch zahlreiche, schnelle Änderungen verändert werden. In dieser Arbeit werden eine Sprache für die Spezifikation von temporalen Anfragen sowie eine Technik für deren Ausführung vorgestellt. Diese Beiträge zielen darauf ab, die Herausforderungen bei der Ausführung temporaler Anfragen zur Laufzeit zu bewältigen---eine Voraussetzung für ein geschichtsbewusstes Architekturmonitoring und geschichtsbewusste Architekturadaptation, die von früheren modellbasierten Lösungen nicht systematisch behandelt wurde. Die besonderen Merkmale unserer Beiträge sind: die Spezifikation von Anfragen auf der Basis einer temporalen Logik, die strukturelle Muster als Graphen kodiert; die Bereitstellung formal präziser Anfrageantworten, die temporale Einschränkungen und laufende Ausführungen berücksichtigen; die inkrementelle Ausführung, die die Neuberechnung von Abfrageantworten nach jeder Änderung vermeidet; und die Option, Historie zu verwerfen, die für Abfragen nicht mehr relevant ist. Bei der Anfrageausführung wird das Modell nach dem Auftreten eines Musters durchsucht, dessen Entwicklung eine temporallogische Formel erfüllt. Neben der modellgetriebenen Entwicklung ist daher die Laufzeitverifikation ein weiteres verwandtes Forschungsgebiet. Der Ansatz unterscheidet sich von bisherigen logikbasierten Lösungen zur Laufzeitverifikation, indem er die Darstellung und Abfrage von Strukturen über Graphen bzw. Graphanfragen unterstützt, was bei Anfragen mit komplexen Mustern effizienter ist. Wir stellen eine prototypische Implementierung des Ansatzes vor und messen seine Laufzeit und seinen Speicherverbrauch in Monitoring- und Adaptationsszenarien aus zwei Anwendungsdomänen mit Ausführungen von zunehmender Größe. Wir bewerten die Skalierbarkeit durch einen Vergleich mit dem Stand der Technik aus beiden verwandten Forschungsgebieten. Die Implementierung liefert vielversprechende Ergebnisse, die den Weg für anspruchsvolle geschichtsbewusste Selbstadaptationslösungen ebnen und darauf hindeuten, dass der Ansatz eine effektive Technik für das Laufzeitmonitoring auf Architekturebene darstellt.…
Author details: | Lucas SakizloglouORCiDGND |
---|---|
URN: | urn:nbn:de:kobv:517-opus4-604396 |
DOI: | https://doi.org/10.25932/publishup-60439 |
Reviewer(s): | Nelly BencomoORCiD, Dániel VarróORCiD |
Supervisor(s): | Holger Giese |
Publication type: | Doctoral Thesis |
Language: | English |
Publication year: | 2023 |
Publishing institution: | Universität Potsdam |
Granting institution: | Universität Potsdam |
Date of final exam: | 2023/07/21 |
Release date: | 2023/08/16 |
Tag: | Architekturadaptation; geschichtsbewusste Laufzeit-Modelle; inkrementelle Ausführung von Graphanfragen; modellgetriebene Softwaretechnik; temporale Graphanfragen architectural adaptation; history-aware runtime models; incremental graph query evaluation; model-driven software engineering; temporal graph queries |
Number of pages: | v, 168 |
RVK - Regensburg classification: | ST 237, ST 234 |
Organizational units: | Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH |
DDC classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
License (German): | CC-BY - Namensnennung 4.0 International |