
EVALUAT ING TEMPORAL QUER I E S
OVER H I STORY-AWARE ARCH ITECTURAL RUNT IME MODELS

dissertation

von

lucas sakizloglou, m. sc.

zur Erlangung des akademischen Grades
doctor rerum naturalium

(Dr. rer. nat.)

in der Wissenschaftsdisziplin
Praktische Informatik

eingereicht an der
Digital-Engineering-Fakultät

des Hasso-Plattner-Instituts und
der Universität Potsdam

Tag der Verteidigung: 21. Juli 2023

Potsdam, 2022

Unless otherwise indicated, this work is licensed under a Creative Commons License Attribution 4.0
International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Lucas Sakizloglou: Evaluating Temporal Queries over History-aware Architectural
Runtime Models, 2022

Advisor:
Prof. Dr. Holger Giese
Hasso Plattner Institute, University of Potsdam, Germany

Reviewers:
Dr. Nelly Bencomo, Associate Professor
University of Durham, United Kingdom

Prof., PhD, habil. DSc Dániel Varró
Linköping University, Sweden

The author was partially funded by the German Research Foundation (DFG)
under the project GRK 1651: Service-oriented Architectures for the Integration
of Software-based Processes, Exemplified by Health Care Systems and Medical
Technology (SOAMED).

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-60439
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-604396

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

ABSTRACT

In model-driven engineering, the adaptation of large software systems with
dynamic structure is enabled by architectural runtime models. Such a model
represents an abstract state of the system as a graph of interacting components.
Every relevant change in the system is mirrored in the model, and triggers an
evaluation of model queries which search the model for structural patterns
that should be adapted. This thesis focuses on a type of runtime models where
the expressiveness of the model and model queries is extended to capture past
changes and their timing. These history-aware models and temporal queries
enable more informed decision-making during adaptation, as they support
the formulation of requirements on the evolution of the pattern that should
be adapted. However, evaluating temporal queries during adaptation poses
significant challenges. First, it implies the capability to specify and evaluate
requirements on the structure as well as the ordering and timing in which struc-
tural changes occur. Then, query answers have to reflect that the history-aware
model represents the architecture of a system whose execution may be ongoing,
and thus answers may depend on future changes. Finally, query evaluation
needs to be adequately fast and memory-efficient despite the increasing size of
the history—especially for models that are altered by numerous, rapid changes.
The thesis presents a query language and a querying approach for the speci-

fication and evaluation of temporal queries. These contributions aim to cope
with the challenges of evaluating temporal queries at runtime, a prerequisite
for history-aware architectural monitoring and adaptation which has not been
systematically treated by prior model-based solutions. The distinguishing fea-
tures of our contributions are: the specification of queries based on a temporal
logic which encodes structural patterns as graphs; the provision of formally
precise query answers which account for timing constraints and ongoing exe-
cutions; the incremental evaluation which avoids the re-computation of query
answers after each change; and the option to discard history that is no longer
relevant to queries. The query evaluation searches the model for occurrences of
a pattern whose evolution satisfies a temporal logic formula. Therefore, besides
model-driven engineering, another related research community is runtime
verification. The approach differs from prior logic-based runtime verification
solutions by supporting the representation and querying of structure via graphs
and graph queries respectively, which is more efficient for queries with com-
plex patterns. We present a prototypical implementation of the approach and
measure its speed and memory consumption in monitoring and adaptation
scenarios from two application domains, with executions of an increasing size.
We assess scalability by a comparison to the state-of-the-art from both related
research communities. The implementation yields promising results, which
pave the way for sophisticated history-aware self-adaptation solutions and in-
dicate that the approach constitutes a highly effective technique for runtime
monitoring on an architectural level.

iii

CONTENT S

1 Introduction 1
1.1 Motivation 1
1.2 Problem Statement 2
1.3 Objectives and Contributions 3
1.4 Plan for Fulfillment and Assessment of Objectives 5
1.5 Outline 5

2 Foundations 7
2.1 Runtime Models 7
2.2 Graphs, Graph Queries, and Graph Transformation 12
2.3 Metric Temporal Graph Logic 18

3 RuntimeModelwithHistory and Specification of TemporalQueries 21
3.1 Runtime Model with History 21
3.2 Query Language 24
3.3 Querying an Unfinished History 27
3.4 Summary 37

4 Querying Approach 39
4.1 Operationalization 40
4.2 Query Evaluation 51
4.3 Maintenance 58
4.4 Application Scenario: History-aware Self-Adaptation 63
4.5 Summary 66

5 Experimental Evaluation 69
5.1 Implementation 69
5.2 Timely Sepsis Treatment for the Smart Hospital System 71
5.3 Trend Detection for the Social Network Benchmark 75
5.4 Comparison to State-of-the-art 81
5.5 Discussion 85

6 Related Work 93
6.1 Foundations 95
6.2 Reactive and Incremental Evaluation of Graph Queries 96
6.3 Querying the History of an Evolving Structure 98
6.4 Runtime Verification 100
6.5 Combining Structural Queries with Complex Event Process-

ing 102
7 Conclusion and Future Work 105

7.1 Conclusion 105
7.2 Future Work 107

Bibliography 111
a Technical Supplement 129

a.1 Intervals 129
a.2 Amalgamated Graph Transformation Rules 130
a.3 Proofs 131

b Experimental Evaluation Supplement 149

v

vi contents

b.1 Implementation 149
b.2 Smart Hospital System 152
b.3 Social Network Benchmark 157

c Publications 161
List of Figures 163
List of Tables 164
List of Listings 164
Acronyms 165
Index 166

1INTRODUCT ION

1.1 motivation

Advanced software systems such as IoT comprise numerous interconnected,
heterogeneous, and autonomous entities, rendering their runtime behavior
unpredictable. Consequently, ensuring that these systems continuously fulfill
their requirements calls for sophisticated adaptation schemes which can moni-
tor the actual runtime behavior and, if necessary, adapt it. A Runtime Model
(RTM) [28] is an artifact that stems fromModel-driven Engineering (MDE).
The RTM captures a representation of the state of a running software system
at a desired level of abstraction and is causally connected to the system, i.e.,
any relevant change to the system is reflected in the model and vice versa; the
model can, therefore, support monitoring and adaptation at runtime.
For adaptation of a complex system with dynamic behavior, the appropriate

level of abstraction of the model is generally considered to be the software
architecture [see 18, 153], as it provides a global perspective on the system and
captures themost important system-level behaviors and properties [62]. Such an
architectural RTM represents the system state as a snapshot of the architecture
consisting of components, i.e., computational elements, and connectors, i.e.,
interactions between components [120]. Monitoring, i.e., searching the model
for situations of interest which should be addressed via adaptation, is performed
by evaluating a (model) query over the snapshot: Every relevant change in the
system is mirrored in the model and triggers an evaluation of the query; the
query searches the model for occurrences of a structural pattern describing an
issue; a query answer contains matches, i.e., found occurrences of the pattern.
Adaptation encompasses monitoring, and may use a match as a precondition
that triggers an adaptation action, i.e., the addition, removal, or replacement
of components and connectors [112] in the match, which aims to resolve the
issue. The adaptation action is performed by an in-place transformation of the
model [67] which, by virtue of the causal connection, is mirrored in the system.
This thesis focuses on a type of architectural RTMs where the expressiveness

of the model and model queries is extended to capture history, i.e., past changes
to the architecture and their timing.History-aware models and temporal queries
enable more informed decision-making during adaptation as they allow for the
expression of expectations on the evolution of a pattern over time. Therefore,
history-aware models and temporal queries can be used for checking assertions
about the past or future, detecting recurrent behaviors, or predicting future
trends [20]. Moreover, history-aware models can be employed by advanced
systems for certain application domains where consideration of temporal data
when examining whether an expectation is fulfilled is mandatory, e.g., in health-
care, where timing constraints are always present in medical guidelines and
their fulfillment is key to the successful completion of medical procedures [37].

1

2 introduction

1.2 problem statement

The inherent support for history, as defined above, has been identified as one of
the grand challenges for modernMDE solutions [31]. For architectural RTMs in
particular, representing history requires a compact encoding of past snapshots
over which changes to model can be tracked [80]; this encoding should cap-
ture the lifespans of entities, i.e., the time intervals for which they exist in the
model [35]. The query language has to support constraints on the ordering as
well as the real time in which structural changes occur and the inclusion of tim-
ing information in query answers [27].The use of model queries for monitoring
requires formally precise semantics [33] such that the soundness of answers
can be ensured; for queries with future timing constraints, the semantics have
to reflect that that queries may be evaluated over an evolving RTM, i.e., an
unfinished system execution, and thus the satisfaction of these constraints may
depend on future changes to the model. Finally, as the history accumulates over
time, the evaluation of temporal queries should remain scalable [61] by using
incremental evaluation techniques and measures for discarding history which
is irrelevant to queries, thereby reducing the memory consumption [10, 27].
This last challenge is exacerbated by the fact that, typically, an RTM is queried at
runtime and monitoring and adaptation solutions depend on the query answer
for taking a remedial action or planning an adaptation.
Based on these challenges, we elicit the following requirements for solutions

which support the representation and querying of a history-aware RTM for
monitoring and adaptation: R1—a history encoding which compactly captures
multiple snapshots, and enables tracing the timing of changes in the lifespans of
entities; R2—a temporal query language which supports (i) the specification of
queries on the structure as well as the ordering and timing in which structural
changes occur (ii) the provision of answers with timing information; R3—sound
answers based on formally precise semantics, even if the query has future timing
constraints and the evaluation is performed over an unfinished execution; R4—
an incremental evaluation technique which enables fast query evaluation; R5—a
memory-efficient encoding which may reduce the memory consumption and
expedite query evaluations.
Despite their potential to enable more informed decision-making, and per-

haps because of the challenges involved, monitoring and adaptation based
on the evaluation of temporal queries over history-aware RTMs have been
generally neglected by the otherwise extensive research on RTMs [18]. Only
recently did solutions emerge that specifically support the storage and querying
of the history of an architectural RTM.The state-of-the-art [61] does not have
formally precise semantics and focuses on offline use-cases, e.g., postmortem
analysis, therefore lacking an incremental evaluation technique which would
allow for scalable query evaluation of temporal queries at runtime.
The history of an architectural RTM may be also encoded and queried by

other model-based technologies. State-of-the-art solutions for non-history-
aware architectural RTMs, e.g., [63, 155], support the incremental evaluation
of purely structural queries, and are shown to be scalable for large systems
with dynamic architectures; although history and temporal queries could be
indirectly supported by these solutions, i.e., via a manual encoding of timing
information, this task is not trivial and the encoding would remain ad hoc.

1.3 objectives and contributions 3

Model-versioning solutions, e.g., [76, 80], could also encode the history of an
RTM. There is, however, a considerable difference between the objectives of
model versioning and those of RTM-based monitoring, which renders those
solutions similarly unsuitable for the repetitive evaluation of temporal queries
at runtime. For example, these solutions often assume that queries will mostly
concern a single timestamp, i.e., a specific version, and they are therefore
optimized for such queries and are less suitable for the evaluation of pattern-
based queries that refer to a period of time [76].
Seen in a broader context, the task of monitoring whether a given expecta-

tion with temporal constraints is fulfilled by a possibly unfinished execution
resembles the focus of the research community known as Runtime Verification
(RV) [11]. RV represents the system behavior by sequences of events at some
level of abstraction. An online algorithm is then used to verify whether (some
prefix of) the sequence satisfies a given property [13], i.e., a formal statement.
The most advanced RV solutions combine an incremental monitoring algo-
rithm with behavior representations which contain only information that is
relevant to the monitored property. Therefore, they are adequately fast and
memory-efficient, even in the face of numerous, fast-paced events.
However, although similarities between RTM-based monitoring and RV can

be observed, so can fundamental differences. An RTM is a causally-connected
snapshot of the architecture, which typically is the product of a broader MDE
context. Query answers over the RTM are supposed to be further utilized at
once within that context—for instance, for self-adaptation. Contrary to an
RTM, representations of the system state in RV solutions are created ad hoc and
are typically inaccessible by other tools or end-users [77], which may render RV
solutions impractical for use within anMDE context, e.g., it may hinder synergy
with other model-based technologies. Moreover, as architectural models are
typically not their primary focus, RV solutions do not match the efficiency of
relevant model-based solutions in representing and querying structures [33, 46].
These leads indicate that RV solutions cannot replace model-based solutions in
architectural adaptation schemes.
In conclusion, both in MDE and RV, there is a lack of a systematic treatment

of temporal query evaluation over history-aware architectural RTM, which fully
supports requirements considered by the relevant literature to be necessary for
architectural monitoring and adaptation.

1.3 objectives and contributions

Our contributions aim at presenting such a systematic treatment, which fulfills
the requirements mentioned previously and thus accomplishes the following
two objectives: An appropriate formalization of the problem of incrementally
evaluating a temporal model query over a history-aware architectural RTM,
thereby increasing confidence in the soundness of answers; a solution which
affords increased scalability compared to the state-of-the-art, thereby enabling
sophisticated history-aware adaptation and a highly effective approach to run-
time monitoring on an architectural level. Scalability denotes the capability of
a solution to mitigate the dependence of query evaluation times and memory
consumption on the size of the history.

4 introduction

Following is a list of our contributions and their distinguishing features.

C1 An encoding of history-aware architectural RTMs, called Runtime Model
with History (RTMH). Following the common practice of representing an
RTM as a graph, the RTMH is a graph which corresponds to a sequence of
timestamped graphs capturing previous snapshots of the RTM. Each entity
in the RTMH has a creation and deletion timestamp which capture its
lifespan. This contribution fulfills the requirement for a compact encoding
of the model history (R1).

C2 A query language for the specification of temporal queries over an RTMH

(C2.1). The language is based on an interval-based temporal logic with in-
herent support for graphs and, therefore, supports statements on themodel
structure as well as the ordering and (quantitative) timing in which struc-
tural changes occur. Queries are characterized by a pattern and a formula
defined in the logic. The answer to a query contains pattern matches in the
RTMH whose evolution satisfies the formula, paired with their temporal
validity, i.e., their lifespan intersected with the period for which they satisfy
the formula (C2.2). Contributions C2.1 and C2.2 fulfill the requirement for
an adequately expressive query language with intuitive answers (R2).
Based on a novel three-valued interpretation of the logic (C2.3), the lan-
guage supports two types of answers which respectively assume that the
evaluation of a query is performed over an RTMH corresponding to a
finished and an unfinished execution (C2.4). We provide proofs on the
soundness of the computation of the temporal validity by both types of
answers. The contributions C2.3 and C2.4 emphasize the fulfillment of
the requirement for sound answers (R3), to which all our formal results
contribute.

C3 A querying approach, named InTempo, which decomposes a temporal
query into a directed acyclic graph of simple sub-queries based on a novel
operationalization framework (C3.1); edges correspond to dependencies
between sub-queries. Sub-queries store their answers in-between query
evaluations and are reevaluated only if a change to the RTMH concerns
them, thus enabling incremental evaluation. We show that the decomposi-
tion produces a result that is equivalent to the query answer.

InTempo offers the option of deriving a window during which deleted enti-
ties in the RTMH are relevant to query evaluations; the window is derived
based on the timing constraints of the formula of the query; InTempo then
prunes entities outside the window thus reducing the size of the RTMH

(C3.2). We show that over a given execution, i.e., a sequence of RTMH

instances, evaluations over the pruned and complete versions return the
same answers, thus pruning does not affect R3. The contributions C3.1 and
C3.2 fulfill the requirements for incremental query evaluation (R4) and a
memory-efficient encoding (R5).

C4 A prototypical implementation of InTempo as a plugin of the well-known
Eclipse Modeling Framework [51, 149]. The plugin supports syntax valida-
tion of queries specified in the presented query language and the modifica-
tion of an RTMH based on an event log containing system changes.

1.4 plan for fulfillment and assessment of objectives 5

1.4 plan for fulfillment and assessment of objectives

Regarding the objective of an appropriate formalization, contrary to the state-
of-the-art in history-aware model-based technologies, we provide proofs on
the soundness of an answer to a temporal query as well as the method of the
answer computation. Our contributions are formally underpinned by the well-
established graph transformation theory [53] and related formal results: the
Metric Temporal Graph Logic [68, 143], which constitutes joint work of the
author; and a formal operationalization framework for structural queries based
on graph transformation [23], which we extend to support temporal queries in
the introduced query language.
Regarding the objective of increased scalability, we conduct an experimental

evaluation based on an implementation of InTempo and two experiments stem-
ming from different application domains. In both experiments, we measure the
query evaluation times andmemory consumption of InTempo over histories of
an increasing size.The performance of InTempo is compared to the state-of-the-
art of RV and MDE. In the first experiment, the implementation of InTempo
is integrated with a feedback control loop which instruments self-adaptation,
i.e., a self-adaptation engine [93], and evaluated via simulations based on a
case-study of a smart medical system, a real medical guideline [126], and a
combination of real and synthetic event logs. The logs are used for simulations
in which query answers from InTempo are used for performing straightforward
adaptations. In the second experiment, we use data generated by the Social
Network Benchmark by the Linked Data Benchmark Council [103] to test the
performance of the implementation with more complex queries over larger
and more complex graph structures.

1.5 outline

Following is an outline of the contents of the thesis.
Chapter 2 presents the foundations of the contributions, namely architectural

RTMs, the graph representation used for RTMs, graph queries, and graph
transformation. This chapter also introduces the temporal graph logic that
serves as a basis for the query language.
Chapter 3 introduces the RTMH (contribution C1, Section 3.1) in technical

detail. Moreover, this chapter introduces the query language, i.e., the contribu-
tion C2.1. Section 3.2 presents the syntax and the basic concepts, including the
temporal validity (contribution C2.2, Section 3.2). Section 3.3 presents the novel
three-valued interpretation of the temporal logic (C2.3) which form the basis
for the query language semantics over a finished and an unfinished execution
(C2.4). The chapter concludes with a summary of the introduced concepts in
Section 3.4.
Chapter 4 introduces InTempo. The querying approach comprises the fol-

lowing three inter-dependent operations: the Operationalization, presented
in Section 4.1, operationalizes a temporal query in the presented language by
decomposing it into a network of simple sub-queries (C3.1); the (query) Evalua-
tion, presented in Section 4.2 executes the network, thus performing the actual
query evaluation; the (optional)Maintenance, presented in Section 4.3, derives

6 introduction

a time window based on which the RTMH is pruned, and returns a projected
answer set over the pruned RTMH (C3.2). Section 4.4 demonstrates the integra-
tion of the querying approach into a self-adaptation engine, thereby rendering
the engine capable of instrumenting history-aware self-adaptation. The chapter
concludes with a summary of the introduced concepts in Section 4.5.
Chapter 5 presents the prototypical implementation of InTempo in Sec-

tion 5.1 (C4). Moreover, this chapter contains the experimental evaluation of
the implementation for the two case-studies (see Section 5.2 and Section 5.3),
and the comparison of the results to the performance of the state-of-the-art—
see Section 5.4. The chapter concludes in Section 5.5 with an assessment of the
fulfillment of the objective for increased scalability, a reflection on advantages
and limitations of InTempo compared to the state-of-the-art, and a discussion
of the threats to validity of the experimental evaluation as well as the measures
taken for their mitigation.
Chapter 6 discusses related work and Chapter 7 concludes the thesis and

discusses plans for future work.
Appendix A is a technical supplement to the thesis, containing technical in-

troductions to important concepts and proofs. Appendix B provides additional
information on the experimental evaluation. Finally, Appendix C contains a
list of published articles and papers in peer-reviewed journals and proceedings,
respectively, which were used as the basis for the thesis.

2FOUNDAT IONS

This chapter presents the foundations of our contributions.
Section 2.1 briefly iterates the fundamentals behind RTMs, introduces the

specific structural architectural RTMs used in the thesis, presents the running
example, and defines a history representation based on a sequence of RTMs.
As it represents structure, an architectural RTM is amenable to a graph-based

encoding. We follow the common practice of representing an RTM as a typed
attributed graph. Section 2.2 presents all the formal graph-related concepts
employed in our contributions, i.e., typed attributed graphs, graph queries,
graph transformation, and the operationalization of graph queries based on
graph transformation and incremental techniques.
Section 2.3 presents the Metric Temporal Graph Logic (MTGL), a metric

temporal logic with direct support for graphs; MTGL enables the formulation
of quantitative temporal requirements on the evolution of graph structures and
constitutes as such the basis of the temporal model query language presented
by the thesis.

2.1 runtime models

2.1.1 Background

In software engineering, amodel is a representation of an original, i.e., a system
or aspect thereof; the model is built for a specific purpose, e.g., accomplishing a
task or simplifying a complex problem, and captures only those characteristics
of the original that are relevant to its purpose [64]. Familiar examples of models
are an architectural model, which captures the system structure in terms of
components and their interactions [120], and a finite-state machine, which
captures possible behaviors of a system.
Model-driven Engineering (MDE) is a software engineering methodology in

which, during the development life-cycle, i.e., the design-time, development
tasks are either automated or performed by systematically transforming un-
ambiguous development models into software artifacts [see 30]. For instance,
models may be used for code generation, automated testing, and refactoring,
as well as static analysis, i.e., the verification—based on a model—that certain
behaviors are never observed. Unambiguity refers to the models being defined
according to a concrete syntax.
A Runtime Model (RTM) builds on information available in development

models but instead focuses on tasks and problems related to the runtime of
a system, i.e., its execution. RTMs act as an interface tomonitor andmanage
the system during its execution, while concealing the complexity these tasks
may entail [59]. For instance, RTMs may be used to support monitoring of the
state of the system, ascertaining whether the system meets its requirements,
or adapting its behavior during runtime. To these ends, it is typically required
that RTMs are self-representations, i.e., modeling a system which can observe

7

8 foundations

changes to itself, and causally-connected, i.e., a change in the system is mirrored
in the RTM and vice-versa [28].
These characteristics are founded on computational reflection [104] and en-

sure that an RTM reflects the latest state of the associated system—which
enables monitoring—and that adaptations on the system can be performed on
themodel and are thenmirrored in the system—which enablesmanagement. In
practice, the causal connection may be perceived as a layer that links the model
space to the runtime space [117], that is, an infrastructure that is equipped to
translate a change to the RTM into a change to the system and vice-versa.
As an example, consider an RTM which provides a view on the current ar-

chitecture of a system, i.e., activated components and connectors. Connectors
represent dependencies or currently established network connections. Upon a
change to the system structure, i.e., a deactivated component, the RTM is up-
dated to reflect said change. Conversely, a desired modification to the structure,
i.e., an activation of a new component, can be performed on the RTM which,
via the causal connection, is then mirrored in the associated system.

2.1.2 Runtime Models in this Thesis

The recent survey on research based on RTMs in [18] paints the picture of a
plethoric yet fragmented landscape where several types of models are employed
to model a diverse array of artifacts for a variety of purposes: For instance,
structural RTMs (the type) are employed to model the system architecture (the
artifact) for the purpose of adapting the architecture at runtime (the purpose);
goal RTMs (the type) are employed to model system requirements (the artifact)
for the purpose of assuring selected non-functional properties of the associated
system (the purpose).We position the RTMs in this thesis within this landscape
based on the same dimensions, i.e., type, artifact, and purpose.
Regarding the type, this thesis focuses on structural RTMs which are essen-

tially component graphs consisting of components, connectors, and informa-
tion about components. Regarding the artifact, we employ structural RTMs to
capture a snapshot, i.e., the current state, of the architecture of a system, a prac-
tice which is commonplace, e.g., [56, 63, 117, 157]. In a snapshot, components
correspond to processing elements of the system, and connectors to communi-
cation or interdependencies among components [120]. Henceforth, we refer to
RTMs simply as architectural. As usual, the RTM is assumed to represent a soft
real-time system [see 34] and, moreover, the modeled architecture is extended
by information on the context of the system, i.e., everything in the operating
environment that affects the properties of the system and its behavior [138],
which facilitates analysis [158]. For the creation of unambiguous RTMs we
employ ametamodel, i.e., a syntax which defines valid RTM instances [24].
Regarding their purpose, RTMs serve primarily as a knowledge base for adap-

tation schemes. For example, the well-known MAPE-K feedback loop [93]
maintains an RTM as part of its knowledge on the current state of the system
architecture; the loop uses the RTM to verify whether the system exhibits a de-
sired behavior, and, if necessary, to adapt the system—forwhich the architecture
is considered to be the appropriate level of abstraction [62, 120].

2.1 runtime models 9

cts : ELong
dts : ELong

MonitorableEntity

cts : ELong
dts : ELong

MonitorableEntity

status : EString

Probe

status : EString

Probe

AdaptationActionAdaptationAction
[0..*][0..*]

IssueIssue

EffectorEffector

SHSServiceSHSService

DrugServiceDrugService

ArchitectureArchitecture

PMonitoringServicePMonitoringService

pID : EInt

Service

pID : EInt

Service

AnnotationsAnnotations

handledBy

[1..1]
handles

[0..*][0..*]

[0..1]

[0..*][0..*]

[0..*][0..*]

[0..*][0..*]

[0..*][0..*]

[0..*][0..*]
executes

effector
[1..*]

[0..*]

modifies

modifiedBy

[0..*]

[0..*]

affects[1..1]

[0..*]

affectedBy

​Fig. 1

Figure 2.1: Metamodel of the SHS (excerpt)

The adaptation is accomplished by well-defined rules. The rules consist of
a pre-condition which describes a condition over a part of the architecture,
i.e., a substructure, which should be adapted, and a post-condition which
describes architectural changes, e.g., addition or removal of components, in
case occurrences of the substructure are found. The architectural changes are
performed by inline model transformation [67], i.e., by transforming the RTM
in place. Changes induced by the transformation are assumed to be mirrored
in the system via causal connection.

Example 2.1.1 (smart hospital system – running example). Examples as well as
part of the experimental evaluation in the thesis are based on a case-study of a
service-based SmartHealthcare System (SHS).The SHS is based on smartmedical
environments [130] where sensors periodically collect physiological measurements
from patients, i.e., data such as temperature, heart-beat, and blood pressure.
Depending on the collected patient measurements, certain medical procedures
are automated and performed by devices, such as smart pumps administering
medicine—as otherwise a clinician would be doing. Figure 2.1 depicts the meta-
model of the SHS based on the Ecore metamodeling syntax [51]. The metamodel
draws from the well-known class diagram, therefore a component is modeled
as a class and a component connector as a reference. The SHS metamodel is
based on the exemplar of a service-based medical system in [161], and captures
the architecture of a running SHS as an instance of the Architecture class.
In the SHS, services are invoked by amain service called SHSService to collect

measurements from patient sensors, i.e., PMonitoringService, or take medical
actions via smart medical devices such as a pump, i.e., DrugService. Instances
of the SHSService correspond to a smart medical environment, i.e., a room in
a hospital, enhanced with sensors and smart devices as well as the appropriate
infrastructure. Invocations of services are triggered by effectors (Effector) and
invocation results are tracked via monitoring probes (Probe) that are attached
on Services. Probes are generated periodically or upon events in the real world.
Each Probe has a status attribute whose value depends on the type of Service.
Each Service has a pID attribute which identifies the patient for whom the
Service is invoked. Entities in gray are explained in later chapters.

10 foundations

status= sepsis
pr1:Probe

s:SHSService

pID= 1
pm1:PMonitoringService

hospital:Architecture

pID= 1
d1:DrugService

Figure 2.2: A rudimentary RTM based on the metamodel in Figure 2.1

See Figure 2.2 for an example of a rudimentary RTM instance (capturing a
fragment of the Architecture instance) based on the metamodel in Figure 2.1.
The RTM shows that: an instance of the SHS has been created (entity hospital)
and an instance of the main service has been invoked (entity s), i.e., a smart
room has been activated; an instance of the monitoring service has been invoked
(entity pm1), i.e., a sensor has been attached to a patient in the room; a probe has
been generated by the monitoring service (entity pr1), i.e., a reading has been
performed by the sensor; an instance of a drug service has been invoked (entity
d1), i.e., a pump which can administer drugs has been attached to a patient in
the room.

2.1.3 History Representation Based on Runtime Models

We identify the system behavior with a (possibly infinite) sequence of instanta-
neous events which represent observable actions or state changes made by the
system or its context at some point in time. We assume that this sequence is
generated by a causal connection layer—see Section 2.1.1. This layer has a clock
whose time domain is the set of non-negative real numbers R+

0 . The layer uses
the clock to timestamp events. An element of the time domain is called a time
point. Intuitively, the history hτ of a system with respect to an event at time
point τ is the sequence of all observed events in the behavior from its beginning,
i.e., time point 0, up to and including τ. For brevity, we group all changes with
the same time point in one event. However, we require that time in the history
eventually diverges, thereby ruling out Zeno behaviors and ensuring that no
event groups an infinite amount of changes.1

As mentioned previously, an architectural RTM represents a snapshot of
the system architecture in terms of components and connectors. Figure 2.2
illustrates such a snapshot (see also Example 2.1.1), capturing a fragment of the
Architecture instance, based on the metamodel in Figure 2.1. Owing to the
causal connection, an event which occurs at time point τ and reflects a change
in the system is mirrored in the RTM, effectively yielding a new version of the
model.Therefore, the history hτ of the system can be represented by a sequence
comprising versions of RTM.

1 In the use-cases of interest, Zeno behaviors will not occur as, in practice, all examined histories
will eventually be finite. Moreover, differences between measurements cannot become infinitely
small.

2.1 runtime models 11

𝐺!

s:SHSService

𝐺"

𝐺#

s:SHSService

hospital:Architecture

hospital:Architecture

s:SHSService

hospital:Architecture

s:SHSService

𝐺$ hospital:Architecture

pID= 1
pm1:PMonitoringService

pID= 1
pm1:PMonitoringService

pID= 1
pm1:PMonitoringService

pID= 2
pm2:PMonitoringService

pID= 1
d1:DrugService

Figure 2.3: The history hG7 comprising the RTMs G2, G4, G5, and G7

In this history representation based on RTMs, each member is an RTM Gτ
which mirrors the events that occurred in the system at τ. For example, assume
the history h5, in which three events occur which correspond to the following
changes to the RTM: at time point 2, a vertex hospital of type Architecture,
the vertex s of type SHSService, and an association between the two vertices
are added; at time point 4 a newly created vertex of type PMonitoringService
with pID= 1 is associated with s; at time point 5, a newly created vertex of
type PDrugService with pID= 1 is associated with s. Each change yielded
an RTM version, therefore the history h5 may be represented by a sequence
hG5 ∶=G2G4G5. The RTMs G2,G4, and G5 are shown in Figure 2.3. Each RTM
in the sequence is yielded by an event, is associated with the time point of the
yielding event, and extends its predecessor by the changes corresponding to
the event. The RTM G2 extends the empty model ∅ which is assumed to be at
the start of every such sequence.
In a history hτ , τ is the time point of the last member of the sequence. The

position of an RTM Gτ in a history comprising RTMs hGτ is given by an index
i ∈ N+. We use the shorthand τi to denote the time point at position i. The
spawning of an RTM based on an event, implies an assumed mapping from the
set of events E to corresponding model modifications. For instance, according
to the mapping, the event at time point 7 corresponds to: the addition of pm2
and its association to s; the deletion of d1 and its disassociation to s—when the
event occurs, owing to causal connection, these modifications are applied to
the RTM. To include the latest event, the history representation hG5 is extended
by the RTM G7, i.e., hG7 = hG5 ⋅G7—illustrated in Figure 2.3.

12 foundations

2.2 graphs, graph queries, and graph transformation

An architectural RTM is amenable to a graph-based encoding, specifically a
typed attributed graph, where entities are modeled as vertices, connectors as
edges, and entity attributes as vertex attributes [156]. A typed attributed graph
is typed over a type graph which defines types of vertices, edges, and attributes
and valid structures for typed attributed graphs—similarly to the relationship
between a metamodel and a model. Encoding an RTM as a graph allows for the
realization of model transformation via established formalisms, such as (typed
attributed) Graph Transformation (GT) [53], where GT rules are used to search
for a part of the model which is transformed in place [67].
We employ sequences of typed attributed graphs to represent a history hGτ

based onRTMs.Moreover, we employ graph queries to search a system snapshot
for fragments of interest captured by graph patterns. Finally, we present previous
work on an operationalization framework for graph queries based on graph
transformation, which enables incremental query evaluation.

2.2.1 Typed Attributed Graphs

In the following, we introduce (typed) graphs and (typed) graph morphisms.

Definition 2.2.1 (graph, graph morphism). A graph G = (GV ,GE , sG , tG) con-
sists of a set of vertices GV , a set of edges GE , a source function sG ∶GE →GV ,
and a target function tG ∶ GE → GV . Given two graphs G = (GV ,GE , sG , tG)
and K = (KV ,KE , sK , tK), a graph morphism f ∶ G → K is a pair of mappings
f V ∶GV → KV , f E ∶GE → KE such that f V ○ sG = sK ○ f E and f V ○ tG = tK ○ f E .

A graph morphism f ∶G→ K is amonomorphism, denoted by↪, if f V and
f E are injective.

Definition 2.2.2 (typed graph, typed graph morphism). A type graph is a
distinguished graph TG = (TGV ,TGE , sTG , tTG). A tuple (G , type) consisting
of a graphG and a graphmorphism type ∶G→TG is called a typed graph. Given
two typed graphsGT = (G , type) andKT = (K , type′), a typed graphmorphism
f ∶GT → KT is a graph morphism f ′ ∶G→ K such that type′ ○ f ′ = type.

Typed graphs can be extended by vertex and edge attributes to obtain typed
attributed graphs [53]. Our contributions rely on the typed, attributed graphs
and graph morphisms introduced in our previous joint work [143, 144]. In
the following, to avoid the complication of presentation, we omit attributes in
technical representations of graphs and graph morphisms.
Attributes are associated with a data type, i.e., a character string, an integer,

a real number, or a boolean. Graphs may contain a set of attribute assignments
A which assign data-type-compatible values to attributes, e.g., pm1.pID = 1
in Figure 2.2. Formally, the set of attribute assignments Amay have various
representations, e.g., distinguished data vertices [53] or an attribute constraint
over sorted variables [142].
The metamodel in Figure 2.1 may be seen as an informal representation of

the type graph of the SHS, where only vertices have attributes. Correspondingly,
the RTM in Figure 2.2 is an informal representation of a typed attributed graph.
We henceforth refer to typed attributed graphs simply as graphs.

2.2 graphs, graph queries, and graph transformation 13

n!.!
s:SHSService

n!.# s:SHSService

pm:PMonitoringService

n!	

s:SHSService

pm:PMonitoringServicepm2:PMonitoringService

{pm.pID = d.pID}

{pm.pID = pm2.pID}

d:DrugService

pm:PMonitoringService

Figure 2.4: Statements on SHS as patterns—braces contain boolean expressions over
the values of attributes of the pattern; vertices with the same label refer to
the same vertex in the host graph

The history representation based on RTMs from Section 2.1.3 may be repre-
sented as a timed graph sequence [68], i.e., a sequence of graphs where: changes
between two consecutive graphs are represented by morphisms describing ad-
ditions and deletions; the timing of changes is computed based on the relative
duration between the graphs.

2.2.2 Graph Queries

A graph query is the equivalent graph-based notion of a model query, i.e., in
this context, a means to explore an existing graph. Typically, a simple graph
query searches for a smaller graph, henceforth called a (graph) pattern, in the
existing (queried) graph, the latter also called a host graph. The evaluation of
a simple graph query over a host graph, also called (graph) pattern matching,
amounts to findingmatches, i.e., occurrences of the query pattern, in the host
graph. Intuitively, a match is a mapping from the pattern to the host graph
which preserves structure and type.

Definition 2.2.3 (simple graph query, graph query language, answer set, match).
Given a typed graph TG, a simple graph query θ is characterized by a graph
pattern n typed over TG. A graph query language is a set of graph queries. The
answer setA for θ over a host graphG is a set of all graphmorphismsm ∶ n↪G
typed over TG. An element ofA is also called amatch.

Besides the set of assignments A, a pattern may be extended with a set of
constraints γ, i.e., boolean logical expressions over the values of attributes of
matches. The attribute values of a match for a simple graph query characterized
by such a pattern have to satisfy the assignments and constraints in A and γ of
the pattern, respectively. Examples of patterns based on the SHS are shown in
Figure 2.4, where the γ in patterns is visualized between braces.
In certain cases, simple graph queries, i.e., queries searching only for a pat-

tern, are not sufficient as a language for expressing more complex queries, for
instance, patterns whose existence in the host graph should be prohibited or
disconnected patterns which should simultaneously exist in the host graph.

14 foundations

In these cases, a simple graph query may be enhanced with an Application
Condition (AC), i.e., a condition which every match m should satisfy. Then, a
graph query θ is characterized by a pattern n and an AC ac over n, and denoted
by θ ∶= (n, ac).
The language of Nested Graph Conditions (NGCs) [75] can formulate ACs

that are as expressive as first-order logic on graphs [38] as shown in [75, 124]
and constitutes, as such, a natural formal foundation for pattern-based queries.

Definition 2.2.4 (nested graph conditions). Let n,n̂ be patterns. Then ϕ is a
nested graph condition (NGC) over n defined as follows.

ϕn ∶∶= true ∣ ¬ϕn ∣ ϕn ∧ϕn ∣ ∃(f ∶ n↪ n̂,ϕn̂)

The morphism f in the existential quantifier binds, i.e., relates, elements in
patterns of outer conditions (n) to patterns of inner (nested) conditions (n̂) and
is therefore also called a binding. In the remainder, we abbreviate ∃(f , true)
by ∃ f and, when the domain of f is clear from context, ∃(f ∶ n↪ n̂,ϕn̂) by
∃(n̂,ϕ). Moreover, abbreviations such as disjunction (∨), and the universal
quantifier (∀) can be defined as usual.

NGCs can be extended with typing over a given type graph TG as usual
[53] by adding typing morphisms from each graph to TG and by requiring
type-compatibility with respect to TG for each graph morphism.
The semantics of NGCs are given by the satisfaction relation below.

Definition 2.2.5 (satisfaction of nested graph conditions). Let G be a host
graph, n a pattern, andm ∶ n↪G a morphism. Moreover, let ϕ be an NGC over
n. Then m satisfies ϕ, written m ⊧NGC ϕ, if one of the following items applies.

• ϕ = true.

• ϕ = ¬ϕ′ and m /⊧NGC ϕ′.

• ϕ = ϕ′∧ϕ′′, m ⊧NGC ϕ′, and m ⊧NGC ϕ′′.

• ϕ = ∃(f ∶ n ↪ n̂,ϕ′) and there exists m̂ ∶ n̂ ↪ G with m̂ ○ f = m and
m̂ ⊧NGC ϕ′.

Intuitively, the existential quantifier in a query (n,∃(n↪ n̂, ϕ̂)) is satisfied
for a match m for n when (i) there exists a match m̂ for n̂ in G such that m̂
satisfies ϕ̂ (ii) m̂ is compatiblewithm, i.e., respects the binding between the two
patterns captured in n↪ n̂. The operator true is always satisfied. The intuition
behind negation and conjunction is similar to that in first-order logic.
Let L be the query language of queries with AC based on NGCs and θ ∶=
(n,ϕ) a query in in L, i.e., ϕ is an NGC over n. The answer set A for θ over
a host graph G contains all matches m in G for the query pattern n such that
m ⊧NGC ϕ. We also denoteA byA(G) when θ is clear from context.

Example 2.2.1 (query with a nested graph condition as an application con-
dition). Assume the following hypothetical requirement which draws from op-
eration sequence compliance, i.e., the order of service invocations [see 161], in
an SHS: “When a sensor service is invoked for a patient by the main service,

2.2 graphs, graph queries, and graph transformation 15

there exists no other sensor service for the same patient. Moreover, a drug ser-
vice should be invoked for the same patient.” Based on the SHS metamodel in
Figure 2.1, the main service is represented by SHSService, the sensor service
by PMonitoringService, and the drug service by DrugService. Then, the de-
scribed situations, i.e., sensor service invoked by a main service, may be captured
by the patterns n1, n1.1, and n1.2, illustrated in Figure 2.4, where the attribute
constraints in n1.1 and n1.2 (illustrated between braces) ensure that the situations
concern the same patient.
Formulated as a query in L, the requirement is then translated into: Find all

matches of pattern n1 in G that satisfy ϕ1, i.e., where a match for n1.1 does not exist
while a match for n1.2 does. In L, this query is captured by θ1 ∶= (n1,ϕ1) with ϕ1
an NGC defined as ¬(∃(n1↪ n1.1, true))∧(∃(n1↪ n1.2, true)), or, abbreviated,
¬(∃n1.1)∧∃n1.2. Nesting implies that vertices s and pm from n1 are bound in
inner patterns n1.1 and n1.2, i.e., all patterns refer to the same s and pm in G. In
our illustrations this is encoded by the usage of the same label for bound elements.
TheA(G5) for θ1, where G5 is illustrated in Figure 2.3, consists of one match

for n1 which satisfies ϕ1, i.e., a pm is found which is connected to a DrugService
with the same pID and not connected to any other sensor services.

2.2.3 Graph Transformation

We briefly present the well-established algebraic approach to typed attributed
Graph Transformation (GT) [53], where the transformation is performed based
on GT rules. Let G be a graph (in this context, encoding an RTM) typed over a
type graph TG. Then, r ∶= ⟨ f ∶ n↪ R⟩ is a simple GT rule, characterized by a
Left-hand Side (LHS) graph (n) and a Right-hand Side (RHS) graph (R)—also
typed over TG. The LHS and RHS define the pre-condition and post-condition
of an application of r, respectively. Intuitively, the application of r searches for
occurrences of the LHS inG, and transformsG according to the RHS. Similarly
to queries, simple rules can be extended with ACs, i.e., r ∶= ⟨ f ∶ n↪ R, acn⟩,
thereby requiring that occurrences of the LHS satisfy the condition ac. Rules
may be combined to form a pair that describes post-conditions which perform
both insertions and deletions in a single rule application inG. A set of GT rules
typed over TG is called a (typed) Graph Transformation System (GTS).
Amalgamated GT rules [25, 69] allow for matching various graph structures

and amalgamating, i.e., synchronizing, these matches over a common kernel
match. An amalgamated rule is defined based on an interaction scheme which
comprises a kernel rule and multi-rules. The kernel rule contains elements
common to all rules and is to be applied only once; a multi-rule extends the
kernel rule and may be applied arbitrarily many times. The interaction scheme
also contains kernel morphisms which embed the kernel rule into each multi-
rule. An amalgamated rule is constructed via the application of the interaction
scheme on a host graph: For each match for a multi-rule in the graph which
overlaps in a match for the kernel rule, a copy of the multi-rule is created to-
gether with a kernel morphism from the kernel rule; all copies are subsequently
glued at their common kernel rule which induces the amalgamated rule. Amore
elaborate description of amalgamated GT rules is presented in Section A.2.

16 foundations

2.2.4 Query Operationalization via Graph Transformation

A graph query is a declarative means to express a structure of interest which
should satisfy a given condition. The query itself does not provide instructions
on how it is to be evaluated, i.e., its operationalization. Operationalization
typically comprises the decomposition of a query into a network, i.e., a suitable
ordering, of simpler sub-queries, e.g., the query evaluation engine in [155] which
is capable of decomposing a query in L into a RETE network based on the
eponymous algorithm [58]. For formally underpinning the operationalization
of temporal queries, we build on the formal framework presented in [23] which
also supports queries inL.The framework in question decomposes a query with
an arbitrarily complex NGC as AC into a generalized form of RETE networks
called Generalized Discrimination Network (GDN) [79].
A GDN is a directed acyclic graph where each node represents a (sub-)query.

To avoid confusion, we refer to the GDN by network. Dependencies between
queries are represented by edges from child nodes, i.e., the nodes whose results
are required, to the parent node, i.e., the node which requires the results. De-
pendencies can either be positive, i.e. the query represented by the parent node
requires the presence of matches of the child node, or negative, i.e., the query
of the parent node forbids the presence of such matches. The overall query
is evaluated bottom-up: The execution of the network starts with leaves and
proceeds upwards. The terminal node computes theA of the query.
The framework in [23] employs typed GT as a basis, and therefore formally

underpins the specification and operationalization of graph queries based on
GT rules. Specifically, the framework realizes aGDNas aGTSwith non-deleting
GT rules. Given a query (n,ϕ) ∈L, the query pattern n and each NGC operator
in ϕ induce a GDN node, i.e., a (sub-)query, which in turn corresponds to
a GT rule. The LHS of the rule realizes a query that searches for matches in
a given host graph G. The RHS of the rule creates a marking node in G that
marks each match andmarking edges from the marking node to each node of
the match—marking nodes are not to be confused with regular graph nodes
in G (which, in this context, represent entities of the modeled system), thus
we use the term vertex for regular graph nodes. In order to be able to create
marking nodes and edges, the GT rules of a GDN, henceforth calledmarking
rules, are typed over an extended type graph TG′ which adds the required
types for marking nodes and edges to the initial type graph TG. The LHS of
rules with dependencies have a (non-nested) AC that require the existence
of marking nodes of their positive dependencies and forbid the existence of
marking nodes of their negative dependencies.

Example 2.2.2 (generalized discrimination network). The Generalized Dis-
crimination Network (GDN) for θ1 from Example 2.2.1 is shown in Figure 2.5
(right), where each square represents a GDN node.
The GDN consists of five nodes. All nodes represent marking rules whose LHS

searches for matches of a pattern and whose RHS creates marking nodes and edges
that mark the matches found by the LHS. The node rn1.1 searches for the pattern
n1.1 and the node rn1.2 searches for the pattern n1.2. Although technically the nodes
rn1.1 and rn1.2 depend on marking nodes created by the marking rules induced
for true, in practice marking rules for true are omitted as their dependency is

2.2 graphs, graph queries, and graph transformation 17

φ! ≔ ¬∃n!.! ∧ ∃n!.#

θ! ≔ (n!,φ!)

𝑟¬

𝑟n!n"

¬

𝑟n!.! 𝑟n!.# ∃n".$∃n"."

𝑟∧ ∧

++

𝑎"."

++

++

pm2:PMonitoringService

++

pm:PMonitoringService

s:SHSService

{pm.pID = pm2.pID}

++

++
s:SHSService

pm:PMonitoringService

++

𝑎"." 𝑎¬

Figure 2.5: GDN (right) and the marking rules rn1.1 , r¬ for θ1

always satisfied. The node r¬ is the parent of a negative dependency (drawn with
a dashed line), i.e., the AC of r¬ is satisfied when a marking node created by rn1
does not exist. The AC of the node r∧ is satisfied when both of the dependencies
of the marking rule are satisfied. The LHS of the nodes induced by conjunction
and negation is inherited from their parent node; in this example the LHS of r∧
and r¬ is the pattern n1. Finally, the topmost node rn1 searches for matches for the
pattern n1, and returns those matches that satisfy its dependency, i.e., the AC ϕ1.
The marking rules for nodes rn1.1 and r¬ are shown in Figure 2.5 (left—within

rectangles), where (i) marking nodes are illustrated by circles, (ii) forbidden
marking nodes are crossed, and (iii) the marking nodes and marking edges added
by a marking rule are dashed and annotated with “++". The figure shows a
compact view where the illustrations of rules contain both their LHS (patterns)
and RHS (marking nodes and edges).

The technical representation of a marking rule of a GDN is as follows—
based on notation and functions from Definition 2.2.1 and the GDN from
Example 2.2.2.The rule rn1.1 is given by ⟨pn1.1 ∶ n1.1↪ R,¬∃pn1.1⟩with the RHS R
of the rule entailing (i) the creation of a marking node an1.1 , i.e., RV = nV1.1⊎an1.1
(ii) and the creation of edges from the marking node to all marked vertices, i.e.,
RE = nE1.1⊎{bk ∣k ∈ nV1.1} such that sR(bk) = an1.1 and tR(bk) = k. The marking
node and marking edges are typed over dedicated types that each rule induces
in the extended type graph TG′. The AC of the rule, i.e., ¬∃pn1.1 , requires that
a match for the LHS of rn1.1 is not marked more than once.
The rule r¬ is given by ⟨p¬ ∶ n1 ↪ R′,¬∃p¬ ∧¬∃pn1.1⟩. The LHS of nodes

induced by negation and conjunction is identical to their context pattern, i.e.,
the pattern of their parent node; therefore the LHS of r∧ is the same as n1 and so
is the LHS of r¬. Regarding the RHS, R′V = nV1 ⊎an¬ and R′E = nE1 ⊎{bk ∣k ∈ nV1 }
such that sR′(bk) = a¬ and tR

′(bk) = k. Themarking nodes and edges are typed
over dedicated types in TG′. Besides the requirement for a single marking node
per match, i.e., ¬∃p¬, the AC of r¬ further prohibits the existence of a marking
node for its dependency r1.1, i.e., ¬∃pn1.1 .

18 foundations

2.2.5 Local Search and Incremental Evaluation

Optimization techniques such as local search can be employed to reduce the
pattern matching effort of GDN nodes [see 5]. In local search, pattern matching
initiates from a single element and builds amatch candidate iteratively following
a heuristics-based search plan.
Owing to the decomposition of the query into simpler marking rules, a net-

work such as the GDN or RETE, is amenable to incremental execution. Changes
in a host graph G are propagated through the network, whose nodes only re-
compute their results if the change concerns them or one of their dependencies.
Therefore, we say that the query is also evaluated incrementally as its answer
set A is updated by each network execution. If a re-computation is deemed
necessary, owing to local search, a node is capable of updating its matches
starting from changed elements instead of starting over.
The previouslymentioned RETE-based engine in [155] combines incremental

query evaluation with local search.The engine has been shown to be adequately
fast in evaluating structural queries over significantly large graphs—typically
representing RTMs, where, similarly to the adaptation setting, the query is
evaluated reactively, i.e., after every change to the model. The effectiveness
of this engine indicates that the combination of local search and incremental
evaluation is also a solid foundation for the evaluation of temporal queries.

2.3 metric temporal graph logic

Adding a temporal dimension to the exemplary requirement fromExample 2.2.1
makes it similar to compliance checking ofmedical procedures whichmay track
time between triage and admission [108], here represented by the invocation of a
sensor service (captured in the pattern n1) and a drug service (n1.2), respectively:
“When a sensor service is invoked for a patient, there should be a drug service
invoked for the same patient within one minute and, until then, there should be no
other sensor service invoked for the same patient.”The specific timing constraint
is adjusted for the purpose of presentation.
Formulated as a query, this instruction introduces a quantitative temporal

requirement on the evolution of graph structures: “find all matches for n1, such
that a match for n1 at a time point τ, at least one match for n1.2 is found at some
time point τ′ ∈ [τ, τ+60], i.e., at most 60 seconds later; in addition, at each
time point τ′′ ∈ [τ, τ′) in between, no match for n1.1 is present”, where all n
patterns refer to the same patient, i.e., the elements s and pm are common in
all matches, and time is assumed to be tracked in seconds.
The query language L introduced in Section 2.2, which employs NGCs for

the definition of AC, does not inherently support temporal requirements. Quan-
titative temporal requirements are typically specified in metric temporal logics,
such as theMetric Temporal Logic (MTL) [96]. MTL is defined over Kripke
structures and represents a system state by a subset of a finite set of atomic
propositions. Thus, MTL does not support the use of bindings of elements
in graphs to express how a certain match evolves over the system evolution,
i.e., in a sequence of graphs. Therefore, for a sensor service invocation, i.e., a
match m1 for n1, and a drug service invocation, i.e., a match m1.2 for n1.2, MTL

2.3 metric temporal graph logic 19

is unable to ensure they refer to the same s and pm, and thus check whether
the invocations concern the same patient.
To enable the definition and analysis of graph conditions with quantitative

temporal requirements on the evolution of patterns, in our previous joint
work we presented theMetric Temporal Graph Logic (MTGL) [68, 143]. MTGL
builds on NGCs and MTL. MTGL is defined over graph conditions, called
Metric Temporal Graph Conditions (MTGCs). The logic employs the support
for bindings from NGCs and, therefore, is able to track the evolution of a
given match in a sequence of graphs separately to other matches. We focus
on a subset of MTGL operators which, besides NGC operators introduced in
Definition 2.2.4, contains themetric, i.e., interval-based, temporal operators
until (UI , with I an interval in R+

0) and its dual since (SI) fromMTL.

Definition 2.3.1 (metric temporal graph conditions). Let n,n̂ be patterns and
f ∶ n↪ n̂ a binding. Moreover, let I be an interval in R+

0 . Then ψ is aMetric
Temporal Graph Condition (MTGC) over n defined as follows.

ψn ∶∶= true ∣ ¬ψn ∣ ψn ∧ψn ∣ ∃(f ∶ n↪ n̂,ψn̂) ∣ ψnUIψn ∣ ψn SIψn

The operators eventually (◊I) and once (⧫I) are abbreviations of until and
since: ◊Iψ = trueUIψ and ⧫Iψ = trueSIψ. Abbreviations for NGCs (see Defini-
tion 2.2.4) may also be used.

In MTGL, the AC in the example above, i.e., “given a match for n1 at a time
point τ, at least one match for n1.2 is found at some time point τ′ ∈ [τ, τ+60],
i.e., at most 60 seconds later; in addition, at each time point τ′′ ∈ [τ, τ′) in
between, no match for n1.1 is present”, is captured by the MTGC ψ1 ∶= ¬∃(n1↪
n1.1, true)U[0,60]∃(n1↪ n1.2, true), or, abbreviated, ¬∃n1.1U[0,60]∃n1.2.
MTGL reasons over (finite) timed graph sequences (see Section 2.2.1) which

capture the history of the system state—similarly to the RTM sequence in
Figure 2.3 where each member of the sequence represents a state of the archi-
tecture. However, MTGCs can also be equivalently checked over a graph with
history [68, 143] defined as follows.

Definition 2.3.2 (graph with history). Let TG be a type graph where all vertices
and edges have the attribute cts, denoting the time point of their creation, and
dts, denoting the time point of their deletion. Then H is a graph with history if
H is typed over TG and the following conditions hold:

• The set of attribute assignments A of H contains assignments cts = x and
dts = y for each vertex and each edge.

• x ≥ 0 and either y > x or, if the element has not been deleted, y = −1.

• For an edge d in H:

– the value of the cts attributes of the source and target vertices of d
are less or equal to the cts value of d, i.e., (sH(d)).cts ≤ d .cts and
(tH(d)).cts ≤ d .cts.

– the value of the dts attributes of the source and target vertices of d
are greater or equal to the dts value of d, i.e., (sH(d)).dts ≥ d .dts
and (tH(d)).dts ≥ d .dts.

20 foundations

Once set, the assignments inA for all attributes inH are fixed; the only exception
is dts, whose value may change once, i.e., from −1 to another value.

Intuitively, in a graph with history H all elements must have a cts and dts to
which a value has been assigned; when an element is created, a value is also
assigned to its dts, this value being −1; this value changes when the element is
deleted in the modeled system. As an element cannot have been deleted prior
to its creation or deleted simultaneously with its creation, the value of dts, if
not −1, has to be larger than the value of cts. Except for the dts, all other values
of attributes in H (including cts) are fixed, once set. Finally, edges in H must
have been created at a time point when both of their endpoints exist, and must
have been deleted at a time point when one of its endpoints does not exist.
A graph with history can be obtained by folding a timed graph sequence into

a single graph that satisfies the conditions above [68, 143].
In the following we define the semantics of the satisfaction relation of MTGL

based on graphs with history.

Definition 2.3.3 (satisfaction of metric temporal graph conditions over a graph
with history). Let H be a graph with history, n a pattern, and m ∶ n ↪ H a
match. Moreover, let τ be a time point in R+

0 and ψ be an MTGC over n. Then
m satisfies ψ at τ, written (m, τ) ⊧ ψ, if maxe∈Ee .cts ≤ τ <mine∈Ee .dts, with E
the elements of m, and one of the following cases applies.

• ψ = true.

• ψ = ¬χ and (m, τ) /⊧ χ.

• ψ = χ∧ω, (m, τ) ⊧ χ, and (m, τ) ⊧ ω.

• ψ = ∃(f ∶ n↪ n̂, χ) and there exists m̂ ∶ n̂↪H such that m̂ ○ f =m and
(m̂, τ) ⊧ χ.

• ψ = χUIω and there exists τ′ with τ′− τ ∈ I such that (m, τ′) ⊧ ω and for
all τ′′ ∈ [τ, τ′) (m, τ′′) ⊧ χ.

• ψ = χSIω and there exists τ′ with τ− τ′ ∈ I such that (m, τ′) ⊧ ω and for
all τ′′ ∈ (τ′, τ] (m, τ′′) ⊧ χ.

Intuitively, a match m for n in the graph with history H satisfies the MTGC
∃(f ∶ n↪ n̂, χ) at time point τ if (i) all elements of m are already created but
not yet deleted at τ, and (ii) there exists a compatible match m̂ for n̂ in H such
that m̂ satisfies the MTGC χ. The operator until is satisfied by a match m at
time point τ when there is a future time point τ′ within the operator interval I
such that m satisfies ω and, until then, i.e., for all time points between τ and
τ′, m continuously satisfies χ. The intuition is inverted for the operator since,
which is satisfied by a match m at time point τ when there is a past time point
τ′ within the operator interval I such that m satisfies ω and, since then, i.e., for
all time points between τ′ and τ, m continuously satisfies χ.

3RUNT IME MODEL WITH H I STORY AND
SPEC I F ICAT ION OF TEMPORAL QUER I E S

This chapter presents a compact encoding of a sequence of RTMs calledRuntime
Model with History (RTMH), which simultaneously provides a view of the latest
state of the architecture as well as of the entire history, i.e., previous snapshots,
of the state. The RTMH is described in detail in Section 3.1.
Based on the RTMH, we introduce in Section 3.2 a query language for the

specification of temporal model queries with quantitative timing constraints.
The language supports the formulation of temporal requirements as formulas in
the interval-based temporal logic introduced in Section 2.3. The query answre
set over a given RTMH comprise those matches for the query pattern in the
model whose evolution satisfies the formula. Relying on the history encoding
in the RTMH and the capability of interval-based logics to check satisfaction for
the entire time domain, we equip answers with timing information. Specifically,
we pair each match with its temporal validity, i.e., the period for which the
match exists in the RTMH and satisfies the formula.
As the given RTMH may encode a history which may be unfinished, i.e., an

ongoing system execution, future changes to the RTMHmay affect the temporal
validity of a match. Section 3.3 presents an additional answer set type which
relies on a novel three-valued interpretation of the logic and ensures that the
temporal validity of a match only includes time points for which the satisfaction
decision will not be affected by future changes to the RTMH.

3.1 runtime model with history

A Runtime Model with History (RTMH) is an enhanced architectural RTM that
simultaneously provides two views on themodeled system: a view of the current
system state of the architecture, which corresponds to a conventional causally-
connected RTM; and a compact view of the history of the state. Formally, the
RTMH is founded on graphs with history—see Definition 2.3.2. The view on
history in an RTMH is afforded by each entity being equipped with a creation
timestamp and a deletion timestamp, abbreviated cts and dts, respectively. For an
example, see Figure 2.1 where all entities inherit from the MonitorableEntity.
The cts and dts capture the time points of creation and deletion of an entity,

respectively. Upon the occurrence of an event in the system, similarly to an
event yielding a new system state, the corresponding entity creation (deletion)
in the RTMH yields a new instance of the RTMH where the cts (dts) of the
modified entity is set based on the time point of the event. When an entity
is created, its dts is set to∞—instead of −1, which is the default assignment
in a graph with history. When an entity is deleted in the modeled system, the
respective entity is not deleted in the RTMH. Rather, its dts is updated to the
time point of the event that induced the deletion.Therefore, the value of the dts
of an entity in an RTMH is always larger than the value of the cts for the same
entity. For an entity e, we define its lifespan as the non-empty non-negative

21

22 rtm with history and specification of temporal queries

𝐺!

s:SHSService

𝐺"

𝐺#

s:SHSService

hospital:Architecture

hospital:Architecture

s:SHSService

hospital:Architecture

s:SHSService

𝐺$ hospital:Architecture

pID= 1
pm1:PMonitoringService

pID= 1
pm1:PMonitoringService

pID= 1
pm1:PMonitoringService

pID= 2
pm2:PMonitoringService

pID= 1
d1:DrugService

Figure 3.1: The history hG7 comprising the RTMs G2, G4, G5, and G7

interval [e .cts, e .dts). The intuition behind the lifespan of an entity being right-
open1 is that if e has been deleted at a time point τ this means that e has existed
until a time point that approaches but is not equal to τ.
An RTMH requires that connectors exist for as long as both their end-points

exist. Moreover, an RTMH has no connector attributes, i.e., edge attributes, and
attribute values of entities may only be set once when the entities are created—
the value of the dts being the only exception; these characteristics incur no loss
of generality as, if changes to connectors or attribute values are of interest, an
RTMH can track these changes by modeling these elements as entities in the
metamodel—as shown in [97]. If an attribute value is modeled as an entity
in the metamodel, each value change would then lead to a creation of a new
entity in the RTMH, where the duration of the value would be captured by a cts
and a dts. Similarly, modeling a connector as an entity allows for supporting
connector attributes and tracking changes to connectors—we demonstrate this
modeling technique in the evaluation in Section 5.3.
By retaining all entities as well as information on their creation and deletion

time points, an RTMH instance suffices to represent the evolution of entities up
to and including the time point of the event that yielded the instance in question.
In contrast to a sequence of RTMs, which stores multiple RTMs and all their
entities to be able to track the evolution of entities over the sequence, an RTMH

stores only a single instance of each model entity. Hence, it affords a compact
and, therefore, more memory-efficient encoding of history. Similarly to an
RTM in a sequence, an instance of the RTMH is associated with the time point

1 An interval is right-open when its right end-point is excluded from the interval. See Section A.1
for a comprehensive definition of intervals.

3.1 runtime model with history 23

𝐻["]

pID= 1
cts= 5
dts= ∞

d1:DrugService
pID= 1
cts= 4
dts= ∞

pm1:PMonitoringService

cts= 2
dts= ∞

hospital:Architecture

cts= 2
dts= ∞

s:SHSService

𝐻[$]

pID= 2
cts= 7
dts= ∞

pm2:PMonitoringService

pID= 1
cts= 5
dts= 𝟕

d1:DrugService
pID= 1
cts= 4
dts= ∞

pm1:PMonitoringService

cts= 2
dts= ∞

s:SHSService
cts= 2
dts= ∞

hospital:Architecture

Figure 3.2: RTMH Instances H[5] and H[7]

of the member of the RTM sequence to which the instance corresponds. For
example, the representation of hG5 from Section 2.1.3 by an RTMH yields a single
model, H[5], that contains the same information as hG5 and covers the same
time period, i.e., [0,5].H[5] is illustrated in Figure 3.2 and, for convenience, hG7 ,
which contains hG5 , is illustrated again in Figure 3.1. We note that in an RTM

H

causal connection only applies to the latest snapshot of the system state.
Technically, an RTMH corresponding to a new event is obtained by a coa-

lescence of the new event and the previous RTMH instance into a new RTMH

instance. For creations, the new instance contains new entities corresponding
to the event and sets the values of their attributes: regular attributes are set
according to data in the event, the cts is set based on the time point of the event,
and the dts is set to∞. For deletions, the dts values of the affected entities are
updated to the time point of the event. For example, when h5 is incremented
to h7 by the event at time point evaluate the query, which corresponds to the
creation of pm2 and the deletion of d1, this event yields a new RTMH H[7]
which constitutes a coalescence of the event and H[5]. H[7] is illustrated in Fig-
ure 3.2—d1.dts has been updated from the previous RTMH and is accentuated.
Each event increments the history and spawns a new RTMH instance, ef-

fectively yielding a sequence hH comprising instances of an RTMH. However,
entities are never deleted in an RTMH instance, and attribute value assignments
(except the dts) are fixed; thus, an RTMH H[τ i], corresponding to the time point
τ of the event with index i in the history, includes all entities and important
timing information from H[τ i−1], rendering the storage of H[τ i−1] after the co-
alescence with the event at τi unnecessary—as demonstrated with H[5] and
H[7] in Figure 3.2.

24 rtm with history and specification of temporal queries

3.2 query language

We introduce the query language LT which enables the specification of tem-
poral model queries over an RTMH via temporal graph queries. A temporal
query ζ ∈LT is characterized similarly to graph queries with NGCs in L (see
Section 2.2.2), i.e., ζ ∶= (n, ac). However, in contrast to L, temporal queries
feature ACs based on MTGCs—see Section 2.3. MTGCs build on NGCs and
allow for the specification of a desired ordering and timing constraints on the
evolution of graph structures, thereby supporting temporal requirements.
In LT, the query from Section 2.3, i.e., “find all matches for n1, such that

a match for n1 at a time point τ, at least one match for n1.2 is found at some
time point τ′ ∈ [τ, τ+60], i.e., at most 60 seconds later; in addition, at each
time point τ′′ ∈ [τ, τ′) in between, no match for n1.1 is present”, is captured by
ζ1 ∶= (n1,ψ1) where ψ1 is an MTGC defined as ¬∃n1.1U[0,60]∃n1.2. Recall that
elements common to n1 and the patterns n1.1,n1.2 are bound—see Section 2.2.
Similarly to entities in an RTMH having lifespans, a match consisting of such

entities also has a lifespan, defined as the set of time points for which matched
entities coexist in the RTMH and satisfy the attribute constraint. As discussed
in Section 1.2, in a time-aware setting, the answer to whether a match satisfies
its AC must be accordingly accompanied by timing information. Temporal
logics that reason over intervals, such as MTGL, are capable of defining the
truth value of a formula for every time point in the time domain. Building on
this capability, compared to the answer setA for a query in L, an answer set T
for a query ζ ∈LT is extended with a temporal dimension: Matches in T are
paired with a temporal validity, i.e., the intersection of their lifespan with the
period for which the match satisfies the AC of ζ, called satisfaction span. We
elaborate on the lifespan, the satisfaction span, and the temporal validity below.

3.2.1 Lifespan of a Match

Entities of an RTMH have attributes which capture their creation (cts) and
deletion (dts) timestamps. These attributes define the lifespan of an entity—see
Section 3.1. A match m in an RTMH H[c], with c ∈R+

0 , is valid only if there is
a non-empty interval λm, called the lifespan of the match, during which the
lifespans of all matched entities E overlap:

λm = ⋂
e∈E
[e .cts, e .dts) (3.1)

Attribute values of matched entities do not change and, hence, cannot affect the
lifespan computation. Entity timestamps are always assigned fromR+

0 , therefore
it always holds that λm ⊆R+

0 . In the special case where the pattern of a query is
the empty graph ∅, an (empty) match m is always found with λm =R+

0 .

3.2.2 Satisfaction Span and Temporal Validity

We call the set of time points for which an MTGC is satisfied its satisfaction
span, denoted by Y. Given a query (n,ψ) ∈ LT or a nested condition with n
as enclosing pattern, and a match m for n in the RTMH H[c], the satisfaction
span ofm for ψ over H[c] is defined as Y(m,ψ) = {τ ∣τ ∈R∧m satisfies ψ at τ}.

3.2 query language 25

The temporal validity of the match is the set of time points for which m exists
in H[c] and satisfies ψ, i.e., the intersection of the lifespan of a match with the
satisfaction span, and is denoted by V(m,ψ).
The intersection of two intervals is always an interval, whereas the union

of two intervals may result in disjoint, i.e., disconnected, sets. To encode such
unions, we define an interval set I ⊆R which may contain disjoint or empty
intervals. Note that a set operation between an I ∈ F and I ∈ I with F and I

the set of all interval sets and intervals, respectively, may result into an I′ ∈ F .
The satisfaction span Y and the temporal validity Vmay depend on unions of
intervals or operations with other interval sets and are, therefore, interval sets
themselves.
The definition below presents the recursively defined satisfaction computation

Z of an MTGC. An explanation of the intuition behind the definition follows.

Definition 3.2.1 (satisfaction computation Z). Let n, n̂ be patterns and ψ, χ,ω
beMTGCs. Moreover, letm be a match for n in an RTMH H[c]. The satisfaction
computation Z(m,ψ) is recursively defined as follows.

Z(m, true) =R (3.2)
Z(m,¬χ) =R∖Z(m, χ) (3.3)
Z(m, χ∧ω) =Z(m, χ)∩Z(m,ω) (3.4)

Z(m,∃(n̂, χ)) = ⋃
m̂∈M̂

λm̂ ∩Z(m̂, χ) (3.5)

Z(m, χUIω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⋃
i∈Z(m,ω), j∈J i

j∩((j+∩ i)⊖ I) if 0 /∈ I

⋃
i∈Z(m,ω)

i ∪ ⋃
j∈J i

j∩((j+∩ i)⊖ I) if 0 ∈ I
(3.6)

Z(m, χSIω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⋃
i∈Z(m,ω), j∈J i

j∩((+ j∩ i)⊕ I) if 0 /∈ I

⋃
i∈Z(m,ω)

i ∪ ⋃
j∈J i

j∩((+ j∩ i)⊕ I) if 0 ∈ I
(3.7)

with:

• m̂ a match for n̂, and λm̂ the lifespan of m̂.

• M̂ a set containing only matches that are compatible with the (enclosing)
match m—see Section 2.2.2.

• Ji the set of all intervals in Z(m, χ) that are either overlapping with or
adjacent to some i ∈Z(m,ω).

• +k the union ℓ(k)∪ k, i.e., making the interval k left-closed, and k+
defined symmetrically.

• k⊕ z = [ℓ(k)+ ℓ(z), r(k)+ r(z)], k⊖ z = [ℓ(k)− r(z), r(k)− ℓ(z)] for
k, z ∈ Iwith ℓ(k) and r(k) the left and right end-point of k, respectively—
note that end-points are reversed in subtraction.

26 rtm with history and specification of temporal queries

The intuition behind the equations for true, negation, and conjunction is
clear. Regarding exists, the satisfaction span can be computed based on a sub-
query which searches for n̂—the computation relies on the temporal validity
of all matches m̂ for n̂ which are compatible with m.
For until, the computation is conditional on the timing constraint I. If 0 /∈ I,

i.e., ℓ(I) /= 0, according to the semantics there is a non-empty interval for
which ψ is continuously satisfied at least until ω is timely satisfied, i.e., within I.
Thus, the computation includes every time point t in the intersection of some
i′ ∈Z(m,ω) with a j′ ∈Z(m, χ) for which a time point τ′ in i′ occurs within I.
Furthermore, j′ needs to overlap i′, e.g., j′ = [1, 3], i′ = [2,4] or be adjacent to
i′, e.g., j′ = [1, 2), i′ = [2,4]. If j′ and i′ are adjacent, during the computation j′
becomes right-closed, i.e., j′+ = [1, 2], to ensure that their intersection produces
a non-empty set. If 0 ∈ I, then, by the semantics, it may be that the interval
for which ψ is satisfied (j′) is empty, i.e., does not exist, and in that case until
is satisfied as soon as ω is satisfied, i.e., for every i′ ∈Z(m,ω). Therefore, the
computation includes every i′ and remains unchanged otherwise.The intuition
behind since is analogous.
The following theorem states that the set of time points in the satisfaction

spanY is equal to the set of time points obtained by the satisfaction computation
Z.

Theorem 3.2.1 (equality of satisfaction span and satisfaction computation).
Given a match m in H[τ] and an MTGC ψ, the satisfaction span Y of m for ψ
over H[c] is given by the satisfaction computation Z of m for ψ over H[c], that is,
Y(m,ψ) =Z(m,ψ)

Proof (idea). By structural induction over ψ. For every equation, inclusion is
shown in both directions. See Section A.3.1 for the complete proof.

Thus Z enables the computation of all time points in R for which a match
satisfies anMTGC , i.e.,Y.We now present a technical definition of the temporal
validity V of a match.

Definition 3.2.2 (temporal validity V). Let n be a pattern, ψ an MTGC, and
H[τ] an RTMH. Moreover, let (n,ψ) be a query for a pattern n which satisfies
ψ. Then, for a match m for n in H[τ] with lifespan λm, its temporal validity V,
denoted asV(m,ψ), is an interval set defined asV(m,ψ) ∶= λm∩Z(m,ψ), with
Z(m,ψ) the satisfaction span of ψ for m.

Z(m,ψ) computes all time points for which m satisfies ψ. This computation
may require taking the lifespan of the match m into account, but it is not
bounded by it. The temporal validity V(m,ψ) bounds Z by λm: it computes the
set of time points for which a match, besides being structurally present in the
graph, satisfies ψ. As an example, assume the query (n,◊[0,5]∃ n̂). For a match
m for n with λm = [3,9), the satisfaction spanZ(m,◊[0,5]∃ n̂) for a match m̂ for
n̂ with λm̂ = [3,6) is [−2,6)—according to Equation 3.6. Thus, in this example,
Z(m,ψ) /⊆ λm. However, V(m,◊[0,5]∃ n̂) is equal to λm ∩[−2,6) = [3,6). As
the example showed, Zmay contain negative time points (hence R is used in
Definition 3.2.1), whereas V ⊆R+

0—since V is produced by an intersection with
λm. It also holds that V(m,ψ) ⊆Z(m,ψ).

3.3 querying an unfinished history 27

3.2.3 Query Answer Set

Based on the temporal validity, we can proceed with a technical definition of
the output of a query inLT, that is, its answer set T. In a RTMH, all entities and,
thus, all matches have a lifespan. Moreover, ACs of queries in LT are formulas
of an interval-based temporal logic which is capable of deciding the truth value
of a formula for every time point in R. Therefore, the answer set of a query in
LT contains matches associated with a temporal validity, i.e., the time points
for which the match exists and satisfies its AC.

Definition 3.2.3 (query answer set T). Given a pattern n, an MTGC ψ, and an
RTMH H[τ], the query answer set T for a query (n,ψ) ∈LT over H[τ] is given
by:

T(H[τ]) = {(m,V(m,ψ))∣m is a match for n in H[τ] ∧V(m,ψ) /= ∅}

Recall that V(m,ψ) is an interval set. The answer set allows for a precise
definition of the output of LT. In the remainder, we rely on this definition to
explain the output of queries in the examples, argue on the soundness of the
query evaluation, and introduce additional types of answer sets.

Example 3.2.1 (satisfaction span, temporal validity, temporal query answer set).
We demonstrate the computation of the satisfaction span Z, the temporal validity
V, and temporal query answer set T ofLT based on the query ζ1 ∶= (n1,ψ1), where
ψ1 ∶= ¬∃n1.1U[0,60]∃n1.2, and the RTMH H[7] from Figure 3.2.
Let m1 be a match for the query pattern n1 involving s and pm1 and p1 be a

match for n1 involving s and pm2. Moreover, let m1.1 be amatch for the pattern n1.2
of the MTGC ∃n1.2 involving s, pm1, and d1. The satisfaction span computations
Z(m1,ψ1) and Z(p1,ψ1) according to Definition 3.2.1 are shown in Table 3.1. The
computation for Z(m1,∃n1.2) is based on the intersection of the lifespan of m1.2
with the satisfaction spanZ(m1.2, true).The computation for until is based on the
overlapping intervals R, i.e., the satisfaction computation Z(m1,¬∃n1.1) for the
left operand of the until, and [5,7), which has been computed by Z(m1,∃n1.2).
The temporal validityV of m1 and p1 is computed based on their intersection of

their lifespans with the satisfaction spans Z(m1,ψ1) and Z(p1,ψ1), i.e., [4,∞)∩
[−55,7) and [7,∞)∩∅, respectively. Since the answer set T admits only matches
whose temporal validity is non-empty, the answer set T(H[7]) contains only the
match m1 paired with its temporal validity [4,7). The pair reflects that there is
one match for n1 in H[7] that satisfies the AC of the query, and, moreover, this
match satisfies the AC for the interval [4,7).

3.3 querying an unfinished history

As mentioned previously, an RTMH provides two views on the modeled archi-
tecture: a view of the current state at time point τ and, by virtue of a creation
and a deletion timestamp per entity, a compact view of the history of the state,
i.e., changes to the state in the period [0, τ].The value of the deletion timestamp
of entities that model components which are currently active in the system, i.e.,
part of the current view, is∞. This modeling decision captures the intuition
that an active component may or may not be deleted during the lifetime of a

28 rtm with history and specification of temporal queries

system, and if it is deleted, this will occur at a time point larger than τ, i.e., some
time in the future. Technically, since the dts defines the lifespan of the entity,
the RTMH makes an assumption about time points larger than τ, although, in
practice nothing is known about these time points.
The computation of the satisfaction span Z of an MTGC over the RTMH

instance H[τ] makes a satisfaction decision for every time point in the time
domain based on this assumption. However, for some of these time points,
the decision may be subject to change: for time points larger than τ, because
changes that will occur after τ are unknown, and for time points before τ,
including τ itself, because future temporal operators may make the satisfaction
check dependent on time points larger than τ. These effects of the assumption
are demonstrated in the computation of the satisfaction span over H[5] and
H[7]: based on the lifespans of elements whose dts is∞, the temporal validity V
of the matchm1 over H[5] is, similarly to Example 3.2.1, computed to be [4,∞);
over H[7], the V is computed to be [4,7).
The results of the computation of the satisfaction span presented in Sec-

tion 3.2.2 are definite, only if the RTMH over which the computation is per-
formed is the last instance of a history, i.e., it encodes a finished history. Given
that RTMs are typically queried reactively and over a period of time whose end
may be unknown, it is desirable to adjust the computation of the satisfaction
span such that the result is definite also in intermediate query evaluations
over an unfinished history. Nonetheless, we further motivate the computation
presented in Section 3.2.2 later in Chapter 4, as it enables a higher degree of
incrementality.

3.3.1 Runtime Monitoring with Temporal Queries

The objective of providing definite answers while monitoring a temporal re-
quirement over an unfinished history demonstrates the similarity of the setting
assumed in this thesis with the monitoring approach known as Runtime Veri-
fication (RV) [see 11]. RV typically represents the system behavior by a trace
of events at some level of abstraction that are observed as they come; an on-
line algorithm is then used to check whether the behavior satisfies a given
property [13] typically specified in a temporal logic.

Table 3.1: The computation for the satisfaction span Z for (n1 ,ψ1) over H[7]; m1 and
p1 denote the matches for n1 which involve pm1 and pm2, respectively.

MTGC m1 p1

true R R
∃n1.1 ∅ ∅
¬∃n1.1 R R

true R R
∃n1.2 [5,7) ∅

¬∃1.1U[0,60]∃1.2 [−55,7) ∅

3.3 querying an unfinished history 29

In our context, this trace corresponds to the history. As the behavior may be
incomplete, i.e., the trace encodes an unfinished history, a major issue in RV is
the extension of temporal logic semantics, which are defined over complete and
infinite traces, to incomplete behaviors [106]. Moreover, RV requires that the
given property ismonitorable, i.e., a definite satisfaction or definite falsification
can be detected after observing a finite trace; satisfaction is detected when
any possible extension of the observed trace satisfies the property, whereas
falsification is detected when the observed trace cannot be extended in any way
such that it satisfies the property [see 122]. A class of such properties is safety
properties [2], i.e., statements of the form “something will not happen” [100],
where falsification can be detected as soon as it occurs [99].
In the context of graphs, a safety property with no temporal operators corre-

sponds to a graph query in L, i.e., a purely structural query—see Section 2.2.2.
Monitoring such properties corresponds to updating a host graph representing
the system state based on a sequence of events and, after each update, searching
the graph for matches of the query pattern [33]. If a match is found, then the
property is falsified, whereas the absence of matches implies a non-definite
satisfaction, as the property could be falsified in the future.
Monitoring properties with temporal operators require the support for the

specification and evaluation of temporal queries, i.e., queries that combine
structure and requirements on the evolution of structure over time, such as
those specified inLT. Similarly to [33], monitoring would require the evaluation
of a temporal query following each change to the host graph, which is the
objective of the querying approach presented in the next chapter.
Moreover, for the considered use-cases, a richer semantics that goes beyond a

two-valued interpretation based on false or true and captures the possibility of a
decision being non-definite would be useful. For this reason, it is often the case
that RV algorithms support a three-valued satisfaction check which returns true
when the property is satisfied, false when it is falsified, and unknown when the
result of the satisfaction check is not definite, i.e., when the observed trace could
be extended to satisfy the property but also to falsify it [16, 54]. In the following,
we introduce a three-valued semantics for LT and adjust the computation of
the satisfaction span such that it is suitable for monitoring temporal properties
over unfinished histories.

3.3.2 Definite Satisfaction and Definite Falsification

Similarly to the three-valued satisfaction check in RV, we equip query evalu-
ations with a capability to compute the falsification span, i.e., the time points
for which a property is falsified. Moreover, to adjust the query evaluation to
unfinished histories, we introduce the definite satisfaction span and the definite
falsification spanwhich contain only those time points for which the satisfaction
or falsification, respectively, is definite, i.e., any possible continuation of the
history will have no impact on the satisfaction decision. In the context of an
RTMH H[c], a satisfaction decision at time point τ is definite if the decision at
τ remains the same in all possible future versions of H[c].
We obtain the definite satisfaction span by adjusting the satisfaction relation

of MTGL from Definition 2.3.3 to this notion of definiteness. Moreover, we

30 rtm with history and specification of temporal queries

obtain the definite falsification span by negating the statements in the cases
of the definite satisfaction. We first present the adjusted satisfaction relation,
called definite satisfaction relation, and the definite falsification relation over an
RTMH, i.e., a graph with history, below.

Definition 3.3.1 (definite satisfaction and definite falsification of metric tem-
poral graph conditions over an RTMH). Let H[c] be an RTMH, n a pattern,
and m ∶ n↪ H[c] a match. Moreover, let τ be a time point in R and ψ be an
MTGC over n. Then m definitely satisfies ψ at τ, written (m, τ) ⊧d ψ, if and
only if τ ∈ λm ∩[0, c], or m is the empty match, and one of the following cases
applies.

• ψ = true.

• ψ = ¬χ and (m, τ) ⊧dF χ.

• ψ = χ∧ω, (m, τ) ⊧d χ, and (m, τ) ⊧d ω.

• ψ = ∃(f ∶ n↪ n̂, χ) and there exists m̂ ∶ n̂↪H[c] such that m̂○ f =m and
(m̂, τ) ⊧d χ.

• ψ = χUIω and there exists τ′ with τ′− τ ∈ I such that (m, τ′) ⊧d ω and
for all τ′′ ∈ [τ, τ′) (m, τ′′) ⊧d χ.

• ψ = χSIω and there exists τ′ with τ− τ′ ∈ I such that (m, τ′) ⊧d ω and
for all τ′′ ∈ (τ′, τ] (m, τ′′) ⊧d χ.

In comparison to the semantics of MTGL presented in Definition 2.3.3,
the definite satisfaction semantics confine the lifespans of matches and the
satisfaction of exists to the period that has been observed, i.e., [0, c]. Moreover,
the definite satisfaction relation relies on the definite falsification relation for
the satisfaction of a negation.
The definite falsification relation is based on a logical negation of the state-

ments in the cases of the definite satisfaction relation. The match m definitely
falsifies ψ at τ, written (m, τ) ⊧dF ψ, if and only if τ ∈ λm ∩[0, c], or m is the
empty match, and one of the following cases applies.

• ψ = ¬χ and (m, τ) ⊧d χ.

• ψ = χ∧ω and (m, τ) ⊧dF χ or (m, τ) ⊧dF ω.

• ψ = ∃(f ∶ n↪ n̂, χ) and either there does not exist an m̂ ∶ n̂↪H[c] such
that m̂ ○ f =m, or there exists m̂ and (m̂, τ) ⊧dF χ.

• ψ = χUIω and for all τ′ with τ′− τ ∈ I (m, τ′) ⊧dF ω or there exists τ′′ ∈
[τ, τ′) such that (m, τ′′) ⊧dF χ.

• ψ = χSIω and for all τ′ with τ− τ′ ∈ I (m, τ′) ⊧dF ω or there exists τ′′ ∈
(τ′, τ], (m, τ′′) ⊧dF χ.

Intuitively, the match m never falsifies true. Moreover, similarly to the definite
satisfaction relation ⊧d , the definite falsification relation confines the decisions
that concern matches to [0, c], and relies on ⊧d for the falsification of negation.

3.3 querying an unfinished history 31

The definite falsification relation (⊧dF) and the negation of the definite satis-
faction relation (/⊧d) are not equivalent; /⊧d returns true for time points that do
not definitely satisfy the operator, i.e., points that falsify it but also points for
which a definite decision cannot yet be made.
The following results relate the definite satisfaction relation ⊧d and definite

falsification relation ⊧dF , i.e., the definite relations, to the satisfaction relation ⊧
and its negation /⊧. The results refer to observed prefixes of a possibly infinite
sequence of RTMH instances hH and their possible continuations; an RTMH

instance H[τ i] in h
H is associated with the timestamp of the event with index

i ∈N+ in the history—see Section 2.1.3 and Section 3.1.
The following theorem states that a definite decision, i.e., a decision made by

either the definite satisfaction or the definite falsification relation, for a certain
time point τ over an H[τ i] in h

H implies that the same decision is made by the
satisfaction relation (or its negation) for τ overH[τ i]; moreover, the satisfaction
relation makes the same decision for τ over all possible future versions of H[τ i]
in hH . In the following, we extend the syntax of relations for clarity and write,
e.g., (H[τ i],m, τ) ⊧ ψ instead of (m, τ) ⊧ ψ.

Theorem 3.3.1 (definite relations imply satisfaction relation over history). Let ψ
be anMTGC over a pattern n.Moreover, let hHτD be a sequence of RTMH instances,
withD ∈N+. For all i ∈ [1,D]∩N+, if m is a match for n in H[τ i] and τ ∈ [0, τi],
then for all k ∈ [i ,D]∩N+, (i) if (H[τ i],m, τ) ⊧d ψ, then (H[τk],m, τ) ⊧ ψ, and
(ii) if (H[τ i],m, τ) ⊧dF ψ, then (H[τk],m, τ) /⊧ ψ.

Proof (idea). By mutual structural induction over ψ. The implication is shown
to hold for each MTGL operator. See Section A.3.2 for the complete proof.

As mentioned previously, the satisfaction decision for future temporal oper-
ators at time point τ may depend on a τ′ > τ. The upper bound of the distance
between τ′ and τ is given by the non-definiteness window, defined below.

Definition 3.3.2 (non-definiteness window w). Given an MTGC ψ, the non-
definiteness window w, i.e., the period for which a satisfaction decision for ψ at
a time point τ may be non-definite, is defined as follows.

w(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(I)+max(w(χ),w(ω)) if ψ = χUI ω

max(w(χ),w(ω)) if ψ = χSI ω

max(w(χ),w(ω)) if ψ = χ∧ω

w(χ) if ψ = ¬χ

w(χ) if ψ = ∃(n, χ)

0 if ψ = true

(3.8)

As is typically the case in (online) runtime monitoring, we assume that
w /=∞, i.e., MTGCs contain no unbounded future operators, which may render
a property non-monitorable—see Section 3.3.1.
Based on the non-definiteness time window, we present a variation of Theo-

rem 3.3.1 which states that, given an H[τ i], if τ ∈ [0, τi −w], with i an index in a
sequence of RTMH instances, then definite decisionsmade by either the definite

32 rtm with history and specification of temporal queries

satisfaction or definite falsification relation are equivalent to the decisions of
the satisfaction relation. If w /= 0, in order for [0, τi −w] to be a valid interval,
it is implicitly required that τi ≥w, i.e., H[τ i] covers a period that is larger than
the non-definiteness window.

Theorem 3.3.2 (definite relations are equivalent to satisfaction relation over
certain period of history). Let ψ be an MTGC over a pattern n and w the non-
definiteness window of ψ.Moreover, let hHτD be a sequence of RTMH instances, with
D ∈N+. For all i ∈ [1,D]∩N+, if m is a match for n in H[τ i] and τ ∈ [0, τi −w],
then for all k ∈ [i ,D]∩N+, (i) (H[τ i],m, τ) ⊧d ψ if and only if (H[τk],m, τ) ⊧ψ,
and (ii) (H[τ i],m, τ) ⊧dF ψ if and only if (H[τk],m, τ) /⊧ ψ.

Proof (idea). By mutual structural induction over ψ. The equivalence is shown
to hold for each MTGL operator. See Section A.3.3 for the complete proof.

Theorem 3.3.2 allows for the application of techniques which increase incre-
mentality in the evaluation of queries, and is motivated further in Section 4.2.3.
The following corollary states that all time points for which a definite decision

cannot be made belong to a certain period within the observed history.

Corollary 3.3.1 (period in history with non-definite decisions). Let ψ be an
MTGC, w be the non-definiteness window of ψ, H[τ i] be an RTM

H instance
associated with the time point τi , m be a match for a pattern n, and τ a time
point in [0, τi]. If (H[τ i],m, τ) /⊧d ψ and (H[τ i],m, τ) /⊧dF ψ, then τ ∈ (τi −w , τi].

Proof. Follows fromTheorem 3.3.2. The satisfaction relation and its negation
make a decision for every time point in [0, τi −w], i.e., the relation does not
support the value unknown—see Section 3.3.1; Theorem 3.3.2 shows that the
decisions made by the satisfaction relation and its negation for [0, τi −w] are
equivalent to the decisions made by the definite relations. Consequently, if no
definite decision is made for τ ∈ [0, τi], then τ /∈ [0, τi −w].

Let ⊧T and ⊧F ,T be respectively a satisfaction and falsification relation for
MTGL that reflect the timeliest knowledge: Given a match m, an MTGC ψ, an
RTMH instance H[τ i] from a sequence of instances, and a time point τ ∈ [0, τi],
(H[τ i],m, τ) ⊧T ψ if (H[τ i],m, τ) ⊧ ψ and there exists no possible successor of
H[τ i] in the sequence that could falsify ψ at τ; analogously, (H[τ i],m, τ) ⊧F ,T ψ
if (H[τ i],m, τ) /⊧ ψ and there exists no possible successor of H[τ i] that could
satisfy ψ at τ. These timeliest relations can only make decisions for m over the
observed history, asmmay not exist in the parts covered by successors of H[τ i],
i.e., in time points larger than τi .
Given a sequence of RTMH instances hH with H[τ i] an instance in h

H , let
H[τk] be the first successor of H[τ i] in h

H for which τk ≥ τi +w. The following
corollary states that, contrary to ⊧T and ⊧F ,T, the definite relations may have
to wait for H[τk] to be able to make a definite decision for τ ∈ (τi −w , τi].

Corollary 3.3.2 (maximum possible wait before definite decision). Let ψ be
an MTGC, w be the non-definiteness window of ψ, m be a match for a pattern
n, and H[τ i] be an RTM

H instance from a sequence of RTMH instances hHτD
with i ∈ [1,D]∩N+. Moreover, let τ ∈ (τi −w , τi] and k be the smallest index in
[i ,D]∩N+ such that τk ≥ τi +w. If (H[τ i],m, τ) /⊧d ψ and (H[τ i],m, τ) /⊧dF ψ,
then a definite decision for τ can be made over H[τk].

3.3 querying an unfinished history 33

Proof. Follows from Corollary 3.3.1.

Thus, compared to ⊧T and ⊧F ,T, the definite relations may make a decision
for τ ∈ (τi −w , τi] with a delay of at most (τk − τi) time points.

Example 3.3.1. (delay in definite decision) Let ψc ∶= ◊[0,1](¬∃n1 ∧∃n1). Con-
sider a sequence consisting of two RTMH instances: H[7] in Figure 3.2 and a
hypothetical H[9] which is yielded by an unrelated change and all elements from
H[7] are unchanged. Therefore, a match m1 exists in both instances. The check
(H[7],m1, 7) ⊧F ,T ψc returns true, as (H[7],m1, 7) /⊧ ψc and there is no possible
successor of H[7] that could satisfy ψc ; on the other hand, (H[7],m1, 7) ⊧dF ψc
makes no decision, as according to its definition, the relation waits first for a dura-
tion of history that covers the timing constraint of until to be observed. The check
(H[9],m1, 7) ⊧dF ψc returns true, as enough time has elapsed. Thus, compared to
⊧F ,T, this decision has been made with a delay of two time points.

The delay is observed with MTGCs which are unsatisfiable or unfalsifiable,
e.g., ψc from Example 3.3.1 which contains a contradiction. Avoiding this de-
lay would require that the definite relations recognize whether an MTGC is
satisfiable which is undecidable for NGCs and thus MTGCs. The delay is not
observed with the running example, i.e., ψ1 ∶= ¬∃n1.1U[0,60]∃n1.2 or similar
MTGCs, as demonstrated by the following example.

Example 3.3.2. (timely definite decision) Let ψnc ∶= (◊[0,2]∃n1.1)∧(◊[0,3]∃n1.2)
over a context pattern n1. Consider the same sequence of two RTMH instances as
in Example 3.3.1, i.e., comprising H[7] and H[9]. Let m1 be a match for n1 in H[7];
H[7] and H[9] contain no matches for n1.1 or n1.2. The check (H[7],m1, 7) ⊧F ,T
ψnc does not detect a falsification as there is a possible successor of H[7] that
could satisfy ψnc at time point 7; check (H[9],m1, 7) ⊧F ,T ψnc returns true as
(H[9],m1, 7) /⊧ ψnc and there is no possible successor of H[9] that could satisfy
the left operand of the conjunction at time point 7. Similarly, (H[7],m1, 7) ⊧dF ψnc
does not return true and (H[9],m1, 7) ⊧dF ψnc does. Therefore, ⊧dF makes the
decision timely, i.e., at the same time point as ⊧F ,T.

The delay could also be avoided by a reformulation of a ψ with w /= 0 into a
ψ′ with w = 0, i.e., without any future temporal operators. However, although
technically possible, such a reformulationmay be non-trivial inmetric temporal
logics [see 4, 90] and especially in the presence of bindings.

3.3.3 Definite Satisfaction Span and Definite Falsification Span

In the context of a query (n,ψ) ∈LT or a nested condition with n as enclosing
pattern, the definite satisfaction span related to a match m for n is defined
similarly to Y in Section 3.2.2, i.e., Yd = {τ∣τ ∈R∧(m, τ) ⊧d ψ}. The definite
falsification span is defined as F = {τ∣τ ∈R∧(m, τ) ⊧dF ψ}. Any time point in
the time domain not in Yd or F belongs to the unknown span X. The sets Yd ,F,
and X are disjoint. It also holds that R = Yd ⊎F⊎X.
Similarly to the satisfaction span Y and the satisfaction computation Z in

Section 3.2.2, we present the definite satisfaction computationZd and the definite
falsification computation F for an MTGC.

34 rtm with history and specification of temporal queries

Definition 3.3.3 (definite satisfaction computation Zd and definite falsification
computation F). Let n, n̂ be patterns andψ, χ,ω beMTGCs. Moreover, letH[τ]
be an RTMH, m be a match for n in H[τ], and F(m,ψ) the definite falsification
computation of m for ψ. The definite satisfaction computation Zd(m,ψ) is
defined as follows.

Zd(m, true) =R (3.9)

Zd(m,¬χ) = F(m, χ) (3.10)

Zd(m, χ∧ω) =Zd(m, χ)∩Zd(m,ω) (3.11)

Zd(m,∃(n̂, χ)) = (−∞, τ]∩ ⋃
m̂∈M̂

λm̂ ∩Zd(m̂, χ) (3.12)

Zd(m, χUIω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⋃
i∈Zd(m,ω), j∈Jdi

j∩((j+∩ i)⊖ I) if 0 /∈ I

⋃
i∈Zd(m,ω)

i ∪ ⋃
j∈Jdi

j∩((j+∩ i)⊖ I) if 0 ∈ I
(3.13)

Zd(m, χSIω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⋃
i∈Zd(m,ω), j∈Jdi

j∩((+ j∩ i)⊕ I) if 0 /∈ I

⋃
i∈Zd(m,ω)

i ∪ ⋃
j∈Jdi

j∩((+ j∩ i)⊕ I) if 0 ∈ I
(3.14)

where, similarly to Definition 3.2.1, m̂ is a match for n̂, and λm̂ the lifespan of
m̂, M̂ a set containing only matches that are compatible with the (enclosing)
match m—see Section 2.2.1, and Jdi the set of all intervals in Z

d(m, χ) that are
either overlapping with or adjacent to some i ∈Zd(m,ω).
The equations for conjunction, until, and since have the same structure with

their corresponding equations in Definition 3.2.1, but rely on Zd instead of Z.
Analogously to the definite satisfaction relation, the computation for negation
relies on the definite falsification computation. The computation for exists
confines its decisions to the period that has been observed.

3.3 querying an unfinished history 35

Based onR=Yd⊎F⊎X, the definite falsification computation F(m,ψ) can be
generally defined as F =R∖(Zd ⊎X), which leads to the following equations.

F(m, true) = ∅ (3.15)

F(m,¬χ) =Zd(m, χ) (3.16)
F(m, χ∧ω) = F(m, χ)∪F(m,ω) (3.17)

F(m,∃(n̂, χ)) = (−∞, τ]∩(R∖Zd(m,∃(n̂, χ))) (3.18)

F(m, χUIω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

R∖
⎛
⎝ ⋃
i∈Zd(m,ω)⊎X(m,ω), j∈Jdi

j∩((j+∩ i)⊖ I)
⎞
⎠

if 0 /∈ I

R∖
⎛
⎝ ⋃
i∈Zd(m,ω)⊎X(m,ω)

i ∪ ⋃
j∈Jdi

j∩((j+∩ i)⊖ I)
⎞
⎠

if 0 ∈ I

(3.19)

F(m, χSIω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

R∖
⎛
⎝ ⋃
i∈Zd(m,ω)⊎X(m,ω), j∈Jdi

j∩((+ j∩ i)⊕ I)
⎞
⎠

if 0 /∈ I

R∖
⎛
⎝ ⋃
i∈Zd(m,ω)⊎X(m,ω)

i ∪ ⋃
j∈Jdi

j∩((+ j∩ i)⊕ I)
⎞
⎠

if 0 ∈ I

(3.20)

where Jdi is the set of all intervals in Zd(m, χ)⊎X(m, χ) that are either over-
lapping with or adjacent to some i ∈Zd(m,ω)⊎X(m,ω).
A match m never falsifies true; analogously to the definite falsification rela-

tion, the definite falsification computation relies on the definite satisfaction
computation for the falsification of negation; the operator exists confines its
computation to the observed period; the equations for until and since com-
plement the definite satisfaction computation for the operators, whereby the
definite satisfaction computation for their operands χ and ω, instead of consid-
ering only time points that definitely satisfy χ and ω, i.e., their satisfaction span
Zd(m, χ) and Zd(m,ω), considers time points that do not definitely falsify χ
and ω, i.e., Zd(m, χ)⊎X(m, χ) and Zd(m,ω)⊎X(m,ω).

The following theorem states that the set of time points in the definite satisfac-
tion span Yd and definite falsification span F are equal to the sets of time points
obtained by the definite satisfaction computation Zd and definite falsification
computation F, respectively.

Theorem 3.3.3 (equality of definite spans and definite computations for satis-
faction and falsification). Given a match m in an RTMH H[τ] and an MTGC
ψ, the definite satisfaction span Yd of m for ψ over H[τ] is given by the definite
satisfaction computation Zd of m for ψ over H[τ], that is, Yd(m,ψ) =Zd(m,ψ).
Moreover, the definite falsification span F of m for ψ over H[τ] is given by

the definite falsification computation F of m for ψ over H[τ], that is, F(m,ψ) =
F(m,ψ).

Proof (idea). The proof for the definite satisfaction Zd proceeds by structural
induction over ψ, similarly to Theorem 3.2.1. The proof for the definite falsifica-
tion F is based on the application of F =R∖(Zd ⊎X) for each MTGL operator.

36 rtm with history and specification of temporal queries

The unknown span X is known for true, where X = ∅, and exists, where, by def-
inition of the RTMH H[τ], X = (τ,∞). If F is known, it can be used to compute
Zd ⊎X. See Section A.3.4 for the complete proof.

3.3.4 Temporal Invalidity and Definite Answer Set

We define the notion of temporal invalidity IV as the dual notion of temporal
validity fromDefinition 3.2.2, i.e., the intersection of the lifespan of amatchwith
the definite falsification span. Based on the definite temporal validity Vd , i.e.,
the intersection of the lifespan λm of a match m with the definite satisfaction
computation Zd , and the definite temporal invalidity IVd , i.e., the intersection
of λm with the definite falsification computation F, the definite answer set Td
for LT pairs matches with both their Vd and IVd . A match is admitted to Td if
either its Vd or its IVd is not empty.

Definition 3.3.4 (definite answer set Td). Given a pattern n, an MTGC ψ, and
an RTMH H[τ], the definite answer set Td for a query (n,ψ) ∈LT over H[τ] is
the set of all triples (m,Vd(m,ψ),IVd(m,ψ) such that (i) m is a match for n
and (ii) (Vd(m,ψ) /= ∅)∨(IVd(m,ψ) /= ∅).

Example 3.3.3 (definite computations and definite answer set). We demonstrate
the definite satisfaction computationZd and the definite falsification computation
F. In this example, the query ζ1 ∶= (n1,ψ1) is evaluated over the RTMH H[5] from
Figure 3.2. As with Example 3.2.1, let m1 be the match for the query pattern n1
involving pm1, and m1.1 be the match for n1.2 involving d1.
The computations for Z(m1,ψ1), Zd(m1,ψ1), F(m1,ψ1) are shown in Ta-

ble 3.2. An important difference between the computations for Z(m1,∃n1.1) and
Zd(m1,∃n1.1) is that the definite computation removes any assumptions made
by Z(m1,∃n1.1) with respect to the future of m1; this computation also affects the
computation for until, and, in turn, the temporal validity.The temporal validityV
of m1 is [4,∞], whereas the definite temporal validity Vd is [4,5]. The temporal
invalidity IVd is empty. The definite answer set Td contains the match paired

Table 3.2: The computation for the definite satisfaction computation Zd , definite falsifi-
cation computation F, and (for reference) the satisfaction computation Z for
(n1 ,ψ1) over H[5]; all results concern the match m1 for n1 which includes
the entity pm1.

MTGC Z Zd F

true R R ∅
∃n1.1 ∅ ∅ (−∞, 5]
¬∃n1.1 R (−∞, 5] ∅

true R R ∅
∃n1.2 [5,∞) [5,5] (−∞, 5)

¬∃1.1U[0,60]∃1.2 [−55,∞) [−55,5] (−∞,−55)

3.4 summary 37

with its definite temporal validity and definite temporal invalidity, i.e., the triple
(m1, [4,5],∅).

3.4 summary

In Section 3.1, we presented the RTMH, i.e., a compact encoding of the history
of an architectural RTM (contribution C1 in Section 1.3). Entities in an RTMH

have a creation (cts) and a deletion (dts) timestamp.The lifespan of an entity e is
the interval [e .cts, e .dts). When an entity is created, its dts is assigned the value
∞; this value is updated if the component of the architecture corresponding
to the entity is removed, i.e., entities are not deleted by default in an RTMH.
Thus, the RTMH affords a compact encoding of past versions of the state of the
architecture.
In Section 3.2, we introduced the query languageLT (C2.1), which allows for

the specification of queries with temporal requirements over an RTMH. The
answer for a query contains matches which satisfy the temporal requirements
paired with an interval that contains time points for which a match exists and
satisfies the requirements. The syntax of a query in LT is (n,ψ) where n is a
query pattern, i.e., the pattern for which the query searches, and ψ is an MTGC,
i.e., a temporal formula in MTGL which captures the temporal requirements
on the evolution of n. Section 3.2 introduces concepts that are key to the rest
of the thesis, hence we summarize them briefly and, when applicable, explain
their relationship to graph- or logic-based concepts.

• Match (denoted by m in examples): A graph morphism tracking an occur-
rence of a pattern in a host graph, here the RTMH.

• Lifespan of a match (λm): The intersection of the lifespans of all entities in a
match.

• Satisfaction span (Z(m,ψ)): The set of time points for which a match m in a
given RTMH satisfy ψ according to the satisfaction relation of MTGL, i.e.,
{τ∣τ ∈R∧(m, τ) ⊧ ψ}.

• Temporal validity (V(m,ψ)): The intersection of the lifespan of the match
λm with the satisfaction span Z(m,ψ).

• Answer set in LT (T): Given the query (n,ψ), the answer set in LT contains
matches for n paired with their temporal validity, provided their temporal
validity is not empty.

Theorem 3.2.1 shows that the satisfaction computation we propose in Defi-
nition 3.2.1 correctly computes the satisfaction span, thereby rendering the
computation of temporal validity (C2.2) sound.
In Section 3.3, we extend the LT to cover the typical case where an RTMH

is queried after every change to the model. In that case, the answer set has
to reflect that future changes to the model may affect answers. To this end,
we extend MTGL by the definite satisfaction relation (⊧d) and the definite
falsification relation (⊧dF) which enable a three-valued interpretation of the
logic (C2.3). We summarize the introduced concepts below.

38 rtm with history and specification of temporal queries

• Definite satisfaction: A match m in a given RTMH definitely satisfies an
MTGC ψ at τ, i.e., (m, τ) ⊧d ψ if m will satisfy ψ at τ in all future versions
of the RTMH.

• Definite falsification: A match m in a given RTMH definitely falsifies an
MTGC ψ at τ, i.e., (m, τ) ⊧dF ψ if m will falsify ψ at τ in all future versions
of the RTMH.

• Non-definiteness window (w): For future temporal operators in MTGL, the
satisfaction at time point τ may depend on a future time point τ′. The non-
definiteness window is the upper bound of the distance between τ and τ′
for a given MTGC.

The definite relations are interdependent. Theorem 3.3.1 shows that definite
satisfaction (⊧d) at a time point τ over an RTMH in a given sequence implies
satisfaction (⊧) at τ for all future RTMH instances in the sequence; analo-
gously, definite falsification implies negation of satisfaction (/⊧). Moreover,
Theorem 3.3.2 shows that, if τ is from a specific time period derived based
on the non-definiteness window, definite satisfaction at τ over an RTMH in a
given sequence is equivalent to satisfaction at τ for all future RTMH instances
in the sequence; analogously, definite falsification is equivalent to negation of
satisfaction. Later in the thesis, it is demonstrated that this last result enables
more efficient query evaluations.
Analogously to Section 3.2, in Section 3.3 we introduce the definite satisfaction

span (Zd) and the definite falsification span (F); we define their computations
and show in Theorem 3.3.3 that these computations are sound. Based on Zd

and F, we introduce the definite temporal validity and definite temporal invalid-
ity, respectively. Given the query (n,ψ), the definite answer set (Td) (C2.4 in
Section 1.3) contains matches for n paired with their definite temporal validity
and invalidity, provided that one of them is not empty.

4QUERY ING APPROACH

This chapter presents a querying approach for temporal queries in LT. The
approach is a sequence of inter-dependent operations which perform the query
evaluation over an RTMH, and called InTempo from Incremental evaluation of
Temporal model queries. In the following, we present an overview of InTempo—
see Figure 4.1 for a graphical reference.

InTempo assumes the following artifacts have been made available at design-
time (i) ametamodel of the system with creation and deletion timestamps for
each entity (ii) amapping of events capturing system changes to model changes,
i.e., additions or deletions of entities and connectors.
The approach represents the history of the system by an RTMH, over which

it evaluates a given set of input queries in LT. The operation of InTempo at
runtime is reactive. Upon the occurrence of an event, InTempo consults the
event mapping, makes the corresponding structural changes to the RTMH, and
sets the values of creation and deletion timestamps of the modified entities
based on the time point of the event. Subsequently, InTempo evaluates the
input queries for each change and returns the answers to the system.

InTempo consists of two core operations, Operationalization and Evaluation,
and the optional operationMaintenance. We outline each operation below.
Operationalization decomposes each of the input queries into a directed

acyclic graph, i.e., a network, where nodes are simpler sub-queries and edges
capture the ordering in which sub-queries should be evaluated. The operation
is only performed once per query (at the beginning) and if the set of input
queries has changed between invocations of InTempo.
Evaluation executes the network(s) over the RTMH. The operation entails

processing the changesmade to the RTMH since the last invocation of InTempo
and evaluating the network nodes. The nodes store their results in-between
executions and only update them if a change to the RTMH affects them.
Maintenance prunes all deleted entities in the RTMH which are irrelevant

to future query evaluations. Query evaluations over a pruned RTMH may
yield faster answers while reducing the memory consumption; however, as the

events

temporal model queries

answers

RTMH

relevance
window

INTEMPO

TGDN

Operationalization

Evaluation

Maintenance

System
+

Context

Input/Output Order

metamodel

event mapping

Runtime
Design-time

Figure 4.1: Overview of InTempo

39

40 querying approach

duration of history encoded by the RTMH is reduced, the temporal validity of
matches refers to a restricted period of time.
Operationalization relies on a novel operationalization framework which

builds on the framework from Section 2.2.4 to support queries inLT. The novel
framework supports the construction of two types of networks: one where
the terminal node of the network computes the satisfaction span Z of found
matches for theMTGCof the query, and onewhere the terminal node computes
the definite satisfaction spanZd and the definite falsification span F. As definite
computations involve the time point of the RTMH, every new instance of an
RTMH calls for a re-computation of all definite spans; hence, in a network
that computes Zd and F, every new RTMH instance calls for a re-execution
of all network nodes such that all spans of stored matches are updated. This
requirement, which does not affect a network that computes Z, mitigates the
degree of incrementality of the query evaluation. Aiming for highly incremental
query evaluations, Operationalization uses only the method of the framework
that constructs the network that computes Z and Evaluation is equipped with
a technique that returns only those time points of Z that are definite; the caveat
is that, for certain MTGCs, this technique returns answers with a certain delay.
Maintenance relies on the computation of a relevance window (during Oper-

ationalization) which is based on timing constraints of the temporal operators
in input queries. Based on the window, the operation decides when deleted
entities are not going to be involved in future query evaluations and can be
thus pruned from the RTMH.
We organize this chapter as follows. The framework used by Operationaliza-

tion for the decomposition of queries into networks is presented in Section 4.1.
The network execution, performed by Evaluation, and the technique that en-
ables highly incremental query evaluation are presented in Section 4.2. Pruning,
performed by Maintenance, and query evaluations over a pruned RTMH are
discussed in detail in Section 4.3. Section 4.4 presents a typical application
scenario for InTempo: the integration of the approach operations with the well-
known MAPE-K loop [93]. The integration serves as a reference adaptation
engine for history-aware self-adaptation.

4.1 operationalization

In the following, we refer to the operationalization framework in [23], sum-
marized in Section 2.2.4, as base approach. The base approach considers graph
queries in L, i.e., where ACs are formulated as NGCs, and thus does not sup-
port temporal requirements on the evolution of patterns. Building on the base
approach, we present a temporal approach which supports the construction
of a Temporal Generalized Discrimination Network (TGDN) based on an AC
formulated as an MTGC, thereby enabling the operationalization of queries
in LT. The construction depends on the structure of the MTGC, therefore the
structure of a TGDN for the satisfaction computation is identical to that of a
TGDN for the definite computations. In the interest of simplicity, the following
subsections focus on a TGDN for the satisfaction computation; we elaborate
on the definite computations at the end of the section.

4.1 operationalization 41

4.1.1 Temporal Generalized Discrimination Network

As in the base approach, we rely on Graph Transformation (GT) and consider
the TGDN as directed acyclic graph consisting of non-deleting GT rules, called
marking rules. Specifically, given a query ζ = (n,ψ) in LT with n and ψ typed
over a type graph TG, a TGDN is aGraph Transformation System (GTS) charac-
terized by the so-called context pattern n and a set of marking rulesR induced
by ψ. Patterns and morphisms inR are typed over an extended type graph TG′,
which contains all marking nodes and marking edges required by rules inR.
In order to compute the satisfaction span Z of a sub-condition in ψ, the

RHS of a rule r ∈ R performs (interval) set operations based on the lifespans of
matches for the LHS of r. The result of these operations constitutes the duration
of the match being marked, and is stored in a distinguished attribute d of type
interval set in the created marking node; the type of marking nodes in TG′ are
correspondingly equipped with this attribute.
As an MTGC may depend on a nested condition to compute its Z, so may

r depend on the duration of marking nodes created by its dependencies to
compute the duration of its own marking node. This implies that the LHS of
r has to be extended by marking nodes of dependencies, so that the duration
of these marking nodes can be included in the computation performed by
the RHS of r. These extensions to rules inR are novel compared to the base
approach, where dependencies are included in the AC of a rule. The extensions
characterize a dependency relation which should fulfill certain conditions. We
define TGDNs and these conditions below.

Definition 4.1.1 (temporal generalized discrimination network). Given a con-
text pattern n typed over TG, an MTGC ψ over n also typed over TG, a set of
marking rules R induced by ψ and typed over an extended type graph TG′

which adds the required types for marking nodes and edges to TG, and a de-
pendency relation consisting of rule pairs (r, r′) from rules inR such that the
marking node created in the RHS of r′ is contained in the LHS of r, then the
GTS g = (R,TG′) is a Temporal Generalized Discrimination Network (TGDN)
for ψ over n if the following conditions: (i) the transitive closure of the depen-
dency relation is acyclic (ii) there is a unique rule called root on which no rule
depends (iii) no two rules exist that directly depend on the same rule.

Applied at an RTMH H[τ], the root of the TGDN creates a marking node for
each match m for n in H[τ]; the interval set assigned to the duration of each
marking node is equal to the satisfaction span Z(m,ψ) of m for ψ.
We proceed by introducing Amalgamated Marking Rules in Section 4.1.2,

which are required for the computation of the duration for certain operators of
MTGL.We describe the rules induced by the operators in detail in Section 4.1.3.
Then, in Section 4.1.4, we define a recursive operation that, given a query in LT
constructs a TGDN according to Definition 4.1.1. The equivalence between the
result of a TGDN and the set of all pairs (m,Z(m,ψ)) is shown in Section 4.1.5,
which also presents the method of obtaining the answer set T of a query based
on the constructed TGDN. Section 4.1.6 elaborates on a TGDN for definite
computations.

42 querying approach

4.1.2 Amalgamated Marking Rules

The computation of the duration of a marking node requires a certain function-
ality which conventional marking rules do not offer. For example, let (n,∃n̂) be
a query inLT. According to Definition 3.2.1, the computation of the satisfaction
span Z for ∃n̂ relies on the set of all matches for n̂ that are compatible with
a match m for n, i.e., the set M̂ in Equation 3.5. Therefore, the marking rule
induced by ∃n̂ is required to keep track of all these matches and compute the
union of their temporal validity. However, the number of these matches may
vary in each application of the rule; the LHS of a conventional marking rule
in the base approach cannot be adjusted before each application of the rule,
depending on the number of found matches.
The computation of Z for the operators negation, until, and since contain

similar conditionals. The satisfaction of until and since requires that the right
operand is satisfied, however, when 0 ∈ I, the satisfaction of the left operand is
optional. The computation for negation is conditional on whether the negated
MTGC is satisfied. For instance, assume the MTGC ¬∃n̂. The intuition of nega-
tion in an interval-based logic as MTGL is the following: If a match m̂ for n̂
exists, then negation is satisfied for the entire time domain minus the lifespan
of m̂; else, negation is satisfied for the entire time domain. The marking rule
corresponding to negation should be applied both when m̂ exists, whereby the
LHS of the rule should include the marking node created by ∃n̂, and when m̂
doesn’t exist, whereby the LHS should exclude that marking node. The defini-
tion and behavior of rules corresponding to these operators vary according to
whether a marking node in the LHS has been matched.
Besides marking rules based on conventional GT rules used in the base

approach, henceforth called Basic Marking Rules (BMRs), in order to support
the varying behavior of rules described above, we employ amalgamated GT
rules. In summary, amalgamated GT rules comprise a kernel rule and multi-
rules:The kernel rule contains elements common to all rules and is to be applied
only once; a multi-rule extends the kernel rule and may be applied arbitrarily
many times. Matches of the multi-rule are glued at the match of their common
kernel rule which induces the amalgamated GT rule—see Section A.2 for a
more elaborate introduction. Based on amalgamated GT rules, we introduce
the Amalgamated Marking Rule (AMR). Technically, when constructed, an
amalgamated GT rule is a basic GT rule [25], thus, a TGDN which contains
AMRs is compatible to the base approach. As explained previously, rules in
the temporal approach, thus also AMRs, equip created marking nodes with an
attribute d of type interval set, and the RHS of the rules is capable of performing
a computation for assigning a value to d. In the context of a TGDN, an AMR is
employed to group a varying number of marking nodes by a kernel match and
perform a computation over the duration of these matched marking nodes, as
required by MTGL operators.

4.1.3 TheMarking Rules Induced by Operators of MTGL

The marking rules induced by MTGL operators in a TGDN are based on a
context pattern. The context pattern corresponds to either the query pattern n

4.1 operationalization 43

𝑟!"#$ 	

s:SHSService
++

𝑎!"#$++

(a) true (BMR)

𝑟¬: µ,	k	

s:SHSService

multi-rule

𝑎χ

++
𝑎¬++

(b) ¬χ (AMR)

𝑟∧ 	

s:SHSService
++

𝑎∧++ 𝑎χ 𝑎ω

(c) χ∧ω (BMR)

𝑟!: µ,	k	

s:SHSService
++

𝑎!++
𝑎χ 𝑎ω

multi-rule

(d) χUIω (AMR)

𝑟∃: µ,	k	

s:SHSService

multi-rule

𝑎n!

++
𝑎∃++

𝑟#! 	

s:SHSService pm:PMonitoringService

++
𝑎#! ++++

𝑎χ

(e) ∃(n1 , χ) (a BMR and an AMR)

Figure 4.2: The rules induced by MTGL operators in the temporal approach. The type
of rules is in parentheses.The assumed context pattern for all rules contains
only the entity s of type SHSService; exists is based on n1 in Figure 2.4.
The rule induced by since is identical in structure to that for until.

or the pattern of an enclosing exists in an MTGC, e.g., given the query (n,ψ),
the context pattern of ψ is initially n; if ψ ∶= ∃(n̂, χ), the context pattern of χ
switches to n̂. Rule definitions are illustrated in Figure 4.2, where the context
pattern for all rules is an exemplary pattern which contains only the entity
s of type SHSService and exists is based on pattern n1 in Figure 2.4. For
presentation purposes, the multi-rule and the kernel rule of an AMR are always
depicted as a single rule.
All rules are defined over the extended type graph TG′. Moreover, a marking

node a created by the RHS of a rule is accompanied by the creation of marking
edges from a to all marked vertices as described in Section 2.2.4; for brevity, this
step is omitted from the rule definitions below. Lastly, if a rule r is dependent on
a rule r′, we refer to the LHS of r that includes the marking node a created by
the RHS of r′ (see Definition 4.1.1) as extended. We denote an extended pattern
by

˜
nr′ or ˜

n χ, where χ is the MTGC that induced r′. If a rule has no dependency,
then the LHS of that rule is not extended.
We elaborate on the rule induced by each MTGL operator below.

(i) exists: An exists, e.g., ∃(n̂, χ), induces a BMR rn̂ and an AMR r∃. The
BMR rn̂ is defined as ⟨pn̂ ∶ ˜

n̂ χ ↪ Rn̂ ,¬∃pn̂⟩, where n̂ χ = n̂V ⊎ a χ, i.e., the
pattern n̂ extended by the marking node a χ created by the dependency
of rn̂, which was induced by χ. The RHS is defined as Rn̂ = n̂V ⊎ an̂, i.e.,
it creates a marking node an̂ that only marks the vertices of n̂, omitting
the marking node a χ in ˜

n̂. The AC of the rule requires that a match is
not marked more than once.

The value of the duration an̂ .d is assigned based on the lifespan λ of the
match. Since matched elements may be marking nodes, the computation
of λ is slightly adjusted compared to Equation 3.1; for a matched element
e, its lifespan is given by the duration e .d if e is a marking node, and
by [e .cts, e .dts) otherwise. As mentioned previously, the duration of a
marking node created by a rule, corresponds to the satisfaction span of

44 querying approach

a match for the MTGC that induced the rule. The λ of a match for the
LHS of rn̂, i.e., the pattern ˜

n̂ χ, is the intersection of (i) the λm̂ of a match
m̂ for n̂ and (ii) the duration a χ .d of the marking node created by r χ, i.e.,
the satisfaction span Z(m̂, χ); therefore, this intersection corresponds to
the temporal validity V(m̂, χ).
Given the context pattern n and match m for n, the satisfaction span
Z(m,∃(n̂, χ)) relies on the set of allmatches for n̂ that are compatible
with a match m for n, i.e., the set M̂ in Equation 3.5. In order to keep
track of these matches, we accompany the rule rn̂ with an AMR. This
AMR comprises a kernel rule k and a multi-rule µ.

The kernel rule k is defined as k ∶= ⟨pk ∶ n↪ Rk ,¬∃pk⟩with n the context
pattern and Rk = nV ⊎a∃ with a∃ the createdmarking node.The duration
of a∃ is set to be the union of the duration of all instances of an̂, i.e., all
copies of the multi-rule, that are found during the construction of the
AMR.This union computes a result equal to Equation 3.5.

The multi-rule µ is dependent on the BMR rn̂ and defined as µ ∶= ⟨pµ ∶

˜
nrn̂ ↪ Rµ , true⟩with ˜

nrn̂ = nV ⊎an̂, i.e., the context pattern n extended by
the marking node created by rn̂, and Rµ = ˜

nrn̂ . The graph Rµ is identical
to

˜
nrn̂ because the rule is only required to track the matches for n̂. The

AC of µ is true as there is no marking node created and, therefore, no
danger of marking a match twice. Moreover, matches for the LHS which
include instances of an̂ have to overlap in the match for the kernel rule,
which ensures that only those matches will lead to a creation of a copy
for the multi-rule during the construction of the AMR.

(ii) negation: The negation of an MTGC χ, i.e., ¬χ, induces an AMR com-
prising a kernel rule k and a multi-rule µ. Given the context pattern n,
the kernel rule is defined as k ∶= ⟨pk ∶ n↪ Rk ,¬∃pk⟩ with Rk = nV ⊎ a¬.
The multi-rule is defined as µ ∶= ⟨pµ ∶ ˜

n χ ↪ Rµ , true⟩ with ˜
n χ = nV ⊎ a χ

and Rµ = ˜
n χ. As all rule definitions that create a marking node require

that a match is marked only once, for a given match of the kernel rule,
the multi-rule can find either a single match or nomatch for themarking
node a χ during the construction of the AMR.The duration of a¬ is set
according to Equation 3.3, i.e., R∖ a χ .d. If the marking node a χ has not
been created, i.e., if χ is never satisfied, and a match for the kernel rule
exists, the kernel rule is still applied. In that case, the duration of a¬ is
computed by R∖∅ =R.

(iii) conjunction: The marking rule induced by the MTGC χ∧ω is a BMR as,
in this case, both operands must be satisfied, i.e., both marking nodes of
rules corresponding to the operands must be matched, in order for the
conjunction to be satisfied—see Equation 3.4. The rule r∧ is defined as
r∧ ∶= ⟨p∧ ∶ ˜

n χ,ω↪R∧,¬∃p∧⟩with ˜
n χ,ω = nV ⊎{a χ , aω} and R∧ = nV ⊎a∧.

The duration of a∧ is set according to Equation 3.4.

(iv) until: The MTGC χUIω induces an AMR with a kernel rule k and one
multi-rule µ χ. The kernel rule includes a marking node corresponding
to the right operand, i.e., a rule rω, thus requiring that the right operand
is satisfied, as this is necessary for until to be satisfied. The existence of

4.1 operationalization 45

a marking node for the left operand, i.e., a rule r χ may be optional, i.e.,
when 0 ∈ I, whereby until is satisfied regardless of the satisfaction of the
left operand.The kernel rule is defined as k ∶= ⟨pk ∶ ˜

nω↪ Rk ,¬∃pk⟩ with

˜
nω = nV ⊎ aω and Rk = nV ⊎ aU. The duration of aU is set according to
Equation 3.6. The multi-rule is defined as µ χ ∶= ⟨pµ χ ∶ ˜

n χ ↪ Rµ χ , true⟩
with

˜
n χ = nV ⊎a χ and Rµ χ = ˜

n χ.Themulti-rule µ χ can find either a single
match or no match for the marking node v χ during the construction
of the AMR. Regardless of whether a marking node for χ is found, if a
match for

˜
nω exists, the kernel rule is still applied.

(v) since: The marking rule induced is identical to the marking rule for until,
except the duration of the marking node is set according to Equation 3.7.

(vi) true: According to the semantics of NGCs and, in turn, MTGL, the
operator true is always satisfied. Therefore, in the base approach, the
operator does not induce a marking rule; instead, it is implicitly mapped
to an AC or, rather, the lack of an additional AC, in a marking rule which
searches for a pattern. In the temporal approach however, the operator
may be involved in the computations of the satisfaction span of other
operators, i.e., once or eventually, which explicitly require the presence
of a marking node with a duration. Thus, in the temporal approach the
operator true induces a BMR, which is defined as rtrue ∶= ⟨ptrue ∶ n ↪
Rtrue,¬∃ptrue⟩ with n the context pattern and Rrtrue = nV ⊎ atrue. The
duration of the marking node is equal to R, as in Equation 3.2.
The involvement of atrue in the LHS of a BMR induced by an exists, e.g.,
∃(n, true)—see item (i), has virtually no effect: the BMR rn induced
by ∃(n, true), computes the duration of the marking node it creates
by intersecting the lifespans of all elements in the match for the LHS;
therefore, the computation for the pattern

˜
ntrue will be equivalent to

λm∩R = λm, withm a match for n. However, the involvement of atrue in
other operators, e.g., once or eventually, does have an effect on the result.

4.1.4 TGDN Construction

We now define the operation C, which, given a query in LT, obtains the set
of rulesR and the marking type graph TG′. The operation uses these charac-
teristics to construct a TGDN.The output of C also includes the root r of the
constructed TGDN.The following definition refers to items from Section 4.1.3.

Definition 4.1.2 (construct a TGDN (Operation C)). The operation C takes
a query (n,ψ) as input; ψ is an MTGC over n and both n and ψ are typed
over a type graph TG. The operation returns a tuple (g , r) with g a TGDN
g = (R,TG′) and r the root of g.
As a preliminary step, the operation traverses ψ and constructs the marking

type graph TG′. The operation proceeds by performing the following recursive
operation Crec(n,ψ) which populatesR and returns r:

• ψ = true and
– A BMR rtrue is created according to item (vi) and added toR. The
LHS of the pattern is the input pattern n.

46 querying approach

– The rule rtrue is returned.

• ψ = ¬χ and
– The dependency r χ = Crec(n, χ) is obtained.
– An AMR r¬, i.e., a kernel rule k and a multi-rule µ, is created
according to item (ii). The pattern of µ includes the marking node
created by r χ. Both rules are added toR.

– The rule k is returned.

• ψ = χ∧ω and

– The dependencies r χ = Crec(n, χ) and rω = Crec(n,ω) are obtained.
– A BMR r∧ is created according to item (iii) and added toR. The
pattern of r∧ includes the marking node of r χ and rω.

– The rule r∧ is returned.

• ψ = ∃(n̂, χ) and
– The dependency r χ = Crec(n̂, χ) is obtained.
– A BMR rn̂ is created according to item (i), whose LHS includes the
marking node created by r χ. An AMR r∃, comprising a kernel k
and a multi-rule µ, is also created according to the same item. All
created rules are added toR.

– The rule k is returned.

• ψ = χUIω and

– The dependencies r χ = Crec(n, χ) and rω = Crec(n,ω) are obtained.
– An AMR rU, i.e., a kernel rule k and a multi-rule µ, is created
according to item (iv). The pattern of µ χ includes the marking
node created by r χ, whereas the pattern of k includes the marking
node created by rω. Both rules are added toR.

– The rule k is returned.

• ψ = χSIω and the operation proceeds similarly to until, although the
rules are created according to item (v).

Finally, based on the obtained TG′, the obtained R, and the r returned by
Crec(n,ψ), the operation constructs the TGDN g and returns the tuple (g , r).

The structure of anMTGC and the construction of a TGDN by the operation
C ensures that the network satisfies the conditions in Definition 4.1.1.

Example 4.1.1 (TGDNconstruction). See Figure 4.3 for the TGDN g1 constructed
by C(n1,ψ1) with ψ1 ∶= ¬∃n1.1U[0,60]∃n1.2. The patterns n1,n1.1, and n1.2 are
depicted in Figure 2.4. As the MTGC ∃n1.1 is an abbreviation for ∃(n1.1, true), it
induces three rules: a BMR rtrue1 for the MTGC true; a BMR rn1.1 and an AMR
r∃1 for exists. The rule rn1.1 depends on rtrue1 . The LHS of rtrue1 is the pattern n1.1
and the RHS of the rule creates a marking node of type atrue1 . The LHS of rn1.1 is
the pattern n1.1 extended by the marking node atrue1 created by rtrue1 ; the RHS of
the rule creates a marking node of type an1.1 .

4.1 operationalization 47

ψ! ≔ ¬∃n!.!U #,%# ∃n!.&
ζ! ≔ (n!,ψ!)

𝑟¬

++

𝑎¬
++

s:SHSService

pm:PMonitoringService
++

𝑎" 𝑎∃!

multi-rule

++ ++

++

pm2:PMonitoringService

++

pm:PMonitoringService

s:SHSService

{pm.pID = pm2.pID}

𝑎$%&'"

𝑎("."

multi-rule
++

++
s:SHSService

pm:PMonitoringService

++

𝑎n"." 𝑎∃"

g!:

𝑟n"." 𝑟n".!

𝑟!"#$!

𝑟∃"

𝑟"

𝑟!"#$"

∃n).) ∃n).+

U[-,/-]

¬

𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒

𝑟∃!

Figure 4.3: The TGDN constructed by C(n1 ,ψ1)with ψ1 ∶= ¬∃ n1.1U[0,60] ∃n1.2, where
AMRs, i.e., rU, r¬, r∃1 , and r∃2 , are represented by a single rule; the context
pattern in the AMRs is the pattern n1 from Figure 2.4.

The rule r∃1 comprises a multi-rule and a kernel rule. The multi-rule depends
on rn1.1 . The LHS of the multi-rule tracks marking nodes of type an1.1 created by
rn1.1 . The RHS of the rule creates no marking node. The LHS of the kernel rule
is the context pattern n1, i.e., a vertex of type SHSService and a vertex of type
PMonitoringService.The RHS of the kernel rule creates a marking node of
type a∃1 . Similarly to ∃n1.1, three rules rtrue2 , rn1.2 , r∃2 are created for ∃n1.2.
The MTGC ∃n1.1 is enclosed by a negation, which induces an AMR r¬. The

multi-rule of r¬ depends on r∃1 . The multi-rule tracks marking nodes of type a∃1 .
The LHS of the kernel rule is the context pattern n1. The RHS of the kernel rule
creates a marking node of type a¬.
Finally, the root of g1 is the AMR induced by the until in ψ1. The multi-rule

tracks marking nodes of type a¬ created by r¬. The LHS of the kernel rule is
the context pattern n1 extended with the marking node of the RHS of the until
operator, i.e., the marking node a∃2 created by r∃2 .

4.1.5 Obtaining the Temporal Validity

The root of a TGDN g for ψ over n executed over an RTMH H[τ] finds all
matches for n and computes their respective satisfaction span for ψ. Conceptu-
ally, we refer to this result as the satisfaction span set and define it as follows.

Definition 4.1.3 (satisfaction span set Σ). Given an MTGC ψ over n, the satis-
faction span set Σψ of ψ over an RTMH H[τ] is given by:

Σψ(H[τ]) = {(m,Z(m,ψ))∣m is a match for n}

48 querying approach

A satisfaction span Z(m,ψ) in Σψ can be empty.

We now define the result of a TGDN in technical terms.The TGDN resultG is
the result of the execution of a TGDN over an RTMH H[τ] , i.e., the application
of the rules inR to H[τ]. In the result G, we make use of an operation obt(a),
which, given a marking node a, it obtains the match marked by a. For instance,
assume that a marking rule r searches for a pattern n. Let m be a match for the
LHS of r and a be the marking node marking the matchm after the application
of RHS of r. The operation obt(a) obtains the match m without the marking
node and marking edges.

Definition 4.1.4 (TGDN result G). Given a TGDN g for an MTGC ψ over a
context pattern n, with r the root of g, the TGDN result Gψ of g over an RTMH

H[τ] is given by:

Gψ(H[τ]) = {(obt(a), a.d)∣a is a marking node created by r}

As before, a.d is the duration of a. To correspond to the satisfaction span set,
the duration a.d in G can be empty.

We now show that given a match m for the context pattern n, the execution
of a TGDN for ψ over n, i.e., the application of the rules in g, creates a mark-
ing node a for m and the duration a.d of this marking node is equal to the
satisfaction span of m for ψ, i.e., Z(m,ψ).

Lemma 4.1.1 (Equality of satisfaction span set and TGDN result). Given an
RTMH H[τ], a context pattern n, an MTGC ψ over n, and a TGDN g character-
ized by the output of C(n,ψ), the satisfaction span set Σψ in H[τ] is equal to the
result Gψ of g, that is:

Σψ(H[τ]) = Gψ(H[τ])

Proof (idea). By structural induction over ψ and the TGDNs that operation
C(n,ψ) constructs. See Section A.3.5 for the proof.

In the temporal approach, the construction of a TGDN g for ψ of a query
(n,ψ) is always followed by the extension of the network by a distinguished
rule, called terminal, induced by the query pattern n.The terminal rule depends
on the root of g and enables the TGDN to compute the temporal validity V
of a match; thus, this extended network comprising the TGDN g and the ter-
minal rule is called the Temporal Validity Generalized Discrimination Network
(TVGDN). The TVGDN returns a result that is equivalent to the query answer
set T. We define the terminal rule together with its result below.

Definition 4.1.5 (terminal rule rt , TVGDN gV, TVGDN result GV). Given
a query (n,ψ) in LT, a TGDN g constructed by C(n,ψ), and r the root of g,
the terminal rule rt is a BMR whose LHS is the pattern

˜
nr , i.e., the pattern n

extended with the marking node created by r.
The Temporal Validity Generalized Discrimination Network (TVGDN) gV

is obtained by an appropriate update to the marking type graph TG′ and an
addition of rt toR. The TVGDN result GV of gV is given by:

GVψ (H[τ]) = {(obt(a), a.d)∣a is a marking node created by rt and a.d /=∅}

4.1 operationalization 49

Contrary to G, GV admits nomarking nodes with an empty duration. Following
the addition of a terminal rule to a TGDN, the network continues to satisfy the
conditions in Definition 4.1.1.

Example 4.1.2 (terminal rule, TVGDN). Given the query ζ1 ∶= (n1,ψ1) and the
TGDN g1 constructed by C(n1,ψ1) in Example 4.1.1, the terminal rule rt1 for g1 is
a BMR whose LHS is the pattern n1 extended by the marking node vU created by
rU, i.e., the root of g1.
The TVGDN gV1 can be obtained by appropriately adjusting the marking type

graph TG′ and adding rt1 toR of g1.

Finally, we show that the result GV of a TVGDN is equal to the query answer
set T (see Definition 3.2.3) of a query in LT.

Theorem 4.1.1 (equality of TVGDN result and query answer set). Given an
RTMH H[τ], a query (n,ψ) in LT, and a TVGDN gV for (n,ψ), the result GV of
gV is equal to the query answer set T of (n,ψ) over H[τ], that is:

T(H[τ]) = GVψ (H[τ])

Proof. By showing inclusion in both directions.
Let t be a tuple (m,V) in T. By definition, V is not empty. The existence of

t implies that there is also a tuple t′ = (m,Z) ∈ Σψ , with Z being not empty.
Recall that gV is obtained by extending g with rt . As shown by Lemma 4.1.1,
the result Gψ of g is equal to Σψ . Therefore, there is a tuple t′′ = (obt(a), a.d)
in Gψ such that t′′ = t′, i.e., a is a marking node created by the root r of g for
a match m and a.d is equal to the non-empty Z(m,ψ). The terminal rule rt
is dependent on r, therefore its LHS is

˜
nr . As the match m for n exists and so

does the marking node a created by r, rt finds a match ˜
mr and computes the

duration of the marking node at by intersecting the lifespans of all elements
of

˜
mr , i.e., including the marking node a created by r. This is equivalent to

λm ∩Z(m,ψ), that is, the temporal validity of m. The terminal rule result GV
contains obt(at), i.e., the match m, paired with the non-empty duration at .d.
Thus, it contains a tuple t′′′ such that t′′′ = t.
We proceed with the inverse direction. Let u be a tuple (obt(a), a.d) ∈ GV.

As the LHS of rt is ˜
nr , this implies that there is a match m for n. As shown

above, the duration a.d is equal to Vm. Note that GV admits only marking
nodes whose duration is not empty, therefore a.d /= ∅. By definition of T, there
exists also a tuple u′ ∈ T involving m, such that u′ = u.

4.1.6 TGDN for Definite Computations

The definite satisfaction span Zd and definite falsification span F are interde-
pendent.This implies that the nodes of a TGDN for definite computations have
to perform both computations. Thus, assuming that the attribute d captures Zd ,
another duration attribute dF which captures F has to be added to the typing
of rules.
Since the construction of a TGDN depends on the MTGC structure, the

structure of a TGDN for Zd and F is identical to that of a TGDN for Z; rule
definitions in Section 4.1.3 only have to be adjusted so that the values of d and

50 querying approach

dF are set according to the definite computations in Section 3.3.3. Assuming
that a TGDN gd has been constructed by a construction operation Cd that
uses these adjusted rule definitions and is otherwise the same as C, we show
equivalence between a definite answer set Td (see Definition 3.3.4) and the
result of a gd analogously to Section 4.1.5.

Definition 4.1.6 (definite satisfaction and falsification span set Σd). Given an
MTGC ψ over n, the definite satisfaction and falsification span set Σdψ of ψ over
an RTMH H[τ] is given by:

Σdψ(H[τ]) = {(m,Zd(m,ψ),F(m,ψ))∣m is a match for n}

The definite spans Zd(m,ψ), F(m,ψ) in Σdψ can be empty.

Definition 4.1.7 (TGDN definite result Gd). Given a TGDN gd for an MTGC
ψ over a context pattern n, with r the root of gd , the definite TGDN result Gdψ
of gd over an RTMH H[τ] is given by:

Gdψ(H[τ]) = {(obt(a), a.d , a.dF)∣a is a marking node created by r}

The values of a.d, a.dF capture the definite satisfaction span and definite falsifi-
cation span, respectively. To correspond to Σdψ , a.d and a.dF can be empty.

We now show that given a match m for the context pattern n, the execution
of a TGDN gd for ψ over n creates a marking node a for m and (i) a.d is equal
to Zd(m,ψ) (ii) a.dF is equal to F(m,ψ).

Lemma 4.1.2 (equality of definite satisfaction and falsification span set and
TGDN definite result). Given an RTMH H[τ], a context pattern n, an MTGC
ψ over n, and a TGDN gd characterized by the output of Cd(n,ψ), the definite
satisfaction and falsification span set Σdψ in H[τ] is given by the definite result Gdψ
of gd , that is:

Σdψ(H[τ]) = Gdψ(H[τ])

Proof (idea). The proof proceeds similarly to Lemma 4.1.1, i.e., by structural
induction over ψ and the TGDNs that operation Cd(n,ψ) constructs. See
Section A.3.6 for the complete proof.

As in Definition 4.1.4, gd is extended by a terminal rule rdt , i.e., a BMR
adjusted to compute a value for both d and dF . Following an appropriate update
to the extended type graph TG′ and an addition of rdt toR, this extension yields
a TVGDN gd ,V whose result is equivalent to the definite answer set.

Definition 4.1.8 (TVGDN definite result Gd ,V). Given a query (n,ψ) in LT
and a TVGDN gd ,V constructed by Cd(n,ψ) and extended by a terminal rule
rdt , the TVGDN result Gd ,V of gd ,V over an RTMH H[τ] is the set of all triples
(obt(a), a.d , a.dF) such that (i) a is a marking node created by rt and (ii)
(a.d /= ∅)∨(a.dF /= ∅).

Finally, we show that the result GV of a TVGDN is equal to the definite query
answer set Td (see Section 3.3.4) of a query in LT.

4.2 query evaluation 51

Theorem 4.1.2 (equality of TVGDN definite result and query definite answer
set). Given an RTMH H[τ], a query (n,ψ) inLT, and a TVGDN gd ,V for (n,ψ),
the result Gd ,V of gd ,V is equal to the definite query answer set Td of (n,ψ) over
H[τ], that is:

Td(H[τ]) = Gd ,Vψ (H[τ])

Proof (idea). The proof proceeds similarly to Theorem 4.1.1. See Section A.3.7
for the complete proof.

4.2 query evaluation

Evaluation in InTempo (see Figure 4.1) performs the evaluation of the query
based on the TVGDN constructed by Operationalization. On a formal level, the
evaluation entails applying the rules of the network in batch to a given RTMH

instance H. Given a new version of the RTMH instance H′, all rules would
have to be reapplied; although marking nodes created in H would remain in
H′ and rule definitions prohibit the duplication of marking nodes, all previ-
ously marked matches would have to be re-matched before the AC of the rule
could conclude that they have been already marked. This evaluation method is
inefficient for repetitive query evaluations over a sequence of RTMH instances.
Focusing on the implementation level, Evaluation applies practical optimiza-

tions which enable incremental query evaluation and are not covered by formal
semantics of GT, i.e., the operation processes only the changes made to RTMH

since the last network execution; it only reapplies rules if a change concerns
their LHS or the LHS of one of their dependencies; the nodes of a network
store their results in-between executions and incrementally update them. Since
Evaluation is the operation where the pattern matching is performed, another
optimization which allows for faster query evaluations is that rules start the
pattern matching effort in the surrounding of elements affected by the change—
see local search in Section 2.2.5. Finally, as discussed in the beginning of this
chapter, definite computations reduce the degree of incrementality in query
evaluations; Evaluation is equipped with a technique to obtain an effective
answer set which, although based on the (non-definite) satisfaction computa-
tion, contains definite answers. For certain MTGCs however, these answers are
returned with a delay.
In the following, we demonstrate a batch query evaluation in Section 4.2.1—

the batch evaluation occurs at the beginning of sequences. We demonstrate
incremental query evaluation in Section 4.2.2. We discuss the effective answer
set in detail in Section 4.2.3.

4.2.1 Batch Query Evaluation

In the following example, we demonstrate a batch query evaluation over an
RTMH instance which we assume is the first member of a sequence.

Example 4.2.1 (batch query evaluation). We demonstrate a batch evaluation of
a query via an example based on the TVGDN gV1 constructed for the query ζ1 (see
Example 4.1.1 and Example 4.1.2) and the RTMH instance H[5] in Figure 3.2. For

52 querying approach

𝐻["]

pID= 1
cts= 5
dts= ∞

d1:DrugService
pID= 1
cts= 4
dts= ∞

pm1:PMonitoringService

cts= 2
dts= ∞

hospital:Architecture

cts= 2
dts= ∞

s:SHSService

𝐻[$]

pID= 2
cts= 7
dts= ∞

pm2:PMonitoringService

pID= 1
cts= 5
dts= 𝟕

d1:DrugService
pID= 1
cts= 4
dts= ∞

pm1:PMonitoringService

cts= 2
dts= ∞

s:SHSService
cts= 2
dts= ∞

hospital:Architecture

Figure 4.4: RTMH Instances H[5] and H[7]

convenience, the instance is also shown in Figure 4.4. Each item in the following
lists marks the application of a marking rule in gV1 . Each marking rule application
leads to the creation of marking nodes whose duration computation depends on
the operator that induced the rule—see Section 4.1.3. As a reminder, exists induces
a BMR and an AMR, negation induces an AMR, true induces a BMR, and until
induces an AMR. The network execution is recursive and starts with one of the
leaves of gV1 .

rtrue1 The LHS of the rule is the pattern n1.1. No matches for n1.1 are found,
therefore no marking is created.

rn1.1 The LHS of the rule is the pattern n1.1 extended by the marking node
vtrue1 , i.e., the marking node type created by rtrue1 . No matches are found.

r∃1 Themulti-rule is applied first.Themulti-rule finds no matches of marking
nodes of the dependency of r∃1 , i.e., the rule rn1.1 . Therefore, no copy of the
multi-rule is created. The LHS of the kernel rule is the context pattern n1.
The vertices s and pm1 are matched. The duration a∃1 .d of the marking
node a∃1 created by the kernel rule is the union of all multi-rule copies.
Since no copies exist, this union is empty. Hence, the empty interval is
stored into a∃1 .d.

4.2 query evaluation 53

r¬ The multi-rule is applied first. The multi-rule finds one marking node
created by the dependency, i.e., the node a∃1 . Therefore, a copy of the
multi-rule is created. The LHS of the kernel rule is n1. The kernel rule
finds one match (vertices s and pm1). The copy of the multi-rule is glued
into the kernel rule. The rule r¬ creates one marking node whose duration
is computed based on the duration a∃1 : R∖ a∃1 .d =R∖∅ =R.

The rule r¬ is one of the two dependencies of the rule rU. Before proceeding, the
rule rU requires that the other dependency has been applied as well, hence, via
recursion, the evaluation proceeds with the rule rtrue2 :

rtrue2 The LHS of the rule is the pattern n1.2. One match is found, containing s,
pm1, d1, and the edges among them. One marking node atrue2 is created
with duration R.

rn1.2 The LHS of the rule is the pattern n1.2 extended with the marking node
atrue2 , i.e., the marking node type created by rtrue2 . One match is found. A
marking node an1.2 is created whose duration is computed by intersecting
all matched vertices. The computed duration is [5,∞), which coincides
with the temporal validity of the match for the MTGC true.

r∃2 The multi-rule is applied first. It finds one match for the marking node of
its dependency, i.e., the marking node atrue2 , thus one copy of the multi-
rule is created. The LHS of the kernel rule is the context pattern n1. The
vertices s and pm1 are matched. The duration a∃2 .d of the marking node
a∃2 created by the kernel rule is the union of all multi-rule copies. Based
on the duration of an1.2 , this computation is equal to [5,∞).

Since both of its dependencies have been applied, the rule rU can now be applied:

rU Themulti-rule is applied, which searches for marking nodes created by the
rule induced by the left operand of until, i.e., the rule r¬. One marking
node is found and a copy of the multi-rule is created. The LHS of the
kernel rule is the pattern n1 extended by the marking node created by the
rule induced by the right operand, i.e., the rule r∃2 . One match is found
containing the vertices s, pm1, and an1.2 . The copy of the multi-rule, i.e.,
the node a¬ is also glued into the kernel rule. The kernel rule proceeds
with the computation of the duration: It first checks whether intervals
stored in the duration of marking nodes of the right operand are adjacent
or overlapping with any of the intervals in the duration of the of marking
nodes of the left operand. In this case, this check is done for the duration
of the nodes an1.2 .d = [5,∞) and a¬.d =R. These intervals are indeed
overlapping. The duration aU.d of the marking node created by rU is
computed according Equation 3.6 to [−55,∞).

54 querying approach

rn1 The LHS of the rule is the pattern n1 extended with the marking node type
created by rU. One match is found containing s, pm1, and aU. The dura-
tion of the marking node an1 to be created is computed by intersecting the
duration of each matched vertex. The vertices s and pm1 effectively consti-
tute a match m1 for n1, therefore intersecting their lifespans computes the
lifespan λm1 of m1; the duration aU.d = corresponds to (m1,Z(m1,ψ1)).
Therefore, intersecting the lifespans of all matched vertices computes the
temporal validity V of m1. In this case, this validity is computed to be
[4,∞)∩[−55,∞)= [4,∞) and stored in the duration an1 .d of the mark-
ing node an1 created by rn1 .

The evaluation returns a GV which contains obt(vn1), i.e., the match m1 paired
with the duration an1 .d, i.e., the temporal validity, [4,∞) of m1, during which,
besides being structurally present in the graph, the match satisfies the temporal
requirements specified in ψ1.

4.2.2 Incremental Query Evaluation

We demonstrate an incremental query evaluation, which always follows a
previous query evaluation. The Evaluation operation of InTempo collects the
changes that are made to the RTMH since the previous evaluation and, for each
change, triggers a new incremental evaluation.
The application of rules in an incremental query evaluation may entail the

re-computation of the duration of marking nodes that have been created in a
previous evaluation. Although on an implementation level such applications
can be performed directly during the query evaluation, they would require
intermediate steps on a formal level, which are not covered by the framework
in Section 4.1.
In the following example, we demonstrate an incremental query evaluation,

which we assume is performed following the query evaluation in Example 4.2.1.

Example 4.2.2 (incremental query evaluation). Example 4.2.1 demonstrated
the batch evaluation of query ζ1 over H[5]. The changes occurring at time point
7 yield a new RTMH instance, i.e., H[7]—see Figure 4.4. The changes entail the
deletion of d1, and the creation of pm2 as well as of an edge between pm2 and s.
In practice, each change triggers a new query evaluation; however, in the interest
of brevity, the example below processes all changes occurring at time point 7 in a
single evaluation. Consequently, changes affect the types of entities in all the LHSs
of all rules and, hence, all rules are reapplied. In this example, rule applications
perform the computations discussed during the presentation of the satisfaction
computation in Example 3.2.1. The evaluation proceeds as follows.

rtrue1 No match is found.
rn1.1 No match is found.

4.2 query evaluation 55

r∃1 The multi-rule finds no marking nodes created by rtrue1 . A new match
for the LHS of the kernel exists (the one involving pm2) whose duration
is also the empty interval. The match found in the previous evaluation
remains unchanged.

r¬ Themulti-rule finds no marking nodes created by rn1.1 . The LHS of the ker-
nel rule is the pattern n1. Thus, a newmatch is found for s and pm2whose
duration is computed to be R, similarly to the previous evaluation over
H[5]. The match found in the previous evaluation remains unchanged.

rtrue2 No new matches are found.
rn1.2 No new matches are found, however, due to the deletion of d1, the du-

ration of the marking node atrue2 found in the previous evaluation is
updated to [5,7).

r∃2 Since the duration atrue2 has been changed, a copy of the multi-rule for
atrue2 is created. This copy is glued into the match found by the kernel
rule in the previous evaluation over H[5] and the duration of the marking
node a∃2 for that match is re-computed to [5,7). The kernel rule finds
also a new match containing s and pm2. The duration of the marking
node a′

∃2
created for this match is empty, as no corresponding marking

node created by rn1.2 , and hence no multi-rule copy, exists.
rU A copy of the multi-rule is created for the new marking node created by

r¬. This copy is glued into a new match for the LHS of the kernel, the one
containing s, pm2, and a′

∃2
. As a′

∃2
.d = ∅, the duration of the marking

node created for this match is also empty. As the match containing s, pm1,
and a∃2 has been modified (a∃2 .d has changed), the rule is reapplied for
this match and the duration of the marking node created, i.e., the marking
node aU from the previous evaluation, is recomputed to [-55,7).

rn1 Two matches are found. The rule is reapplied for both matches: the match
m1 (from before—containing s and pm1) and aU has been modified;
the other match, containing s and pm2 (or m2) and the newly created
marking node from the dependency, is new. The duration of the match
involving m1 is re-computed to [4,7), whereas the duration of the match
involving m2 is empty.

The evaluation returns a GV which has been incrementally updated and contains
the match m1. The match m2, although structurally present, does not satisfy the
MTGC in ζ1—the match has an empty temporal validity. The temporal validity
of m1 has been updated to reflect the change to d1 at time point 7.

4.2.3 Preserving a High Degree of Incrementality

As discussed in Section 3.3, an RTMH H[τ] makes an assumption about the
future of entities, i.e., the period (τ,∞). Because of this assumption, the sat-
isfaction computation Z may contain time points for which the satisfaction
decision may be non-definite. Definite computations (Zd and F) contain only
time points for which a definite decision can be made. However, as the defi-
nite computations involve the time point of the RTMH, every new instance of
an RTMH calls for a re-computation of all definite spans; therefore, although

56 querying approach

matches continue to be incrementally maintained in the TVGDN, the compu-
tation of the temporal validity and temporal invalidity of matches is rendered
non-incremental, thus reducing the degree of incrementality of the query eval-
uation. In addition, the query evaluation speed becomes dependent on the
number of matches stored by the TVGDN. Since scalability is key to querying
history at runtime, the default answer set featured in InTempo, as presented
and implemented by this thesis, is T, i.e., the answer set based on Z, which
preserves a high degree of incrementality in the query evaluation.
In the context of runtime monitoring, a property is typically monitored to

detect falsifications—see Section 3.3.1. When used for runtime monitoring, T
may include answers which, depending on the future of the execution, may
become false positives. As an example, recall the query ζ1 ∶= (n1,ψ1) from
Example 4.2.1 and Example 4.2.2, with ψ1 ∶= ¬∃n1.1U[0,60]∃n1.2. In order for
matches of ζ1 to return answers which constitute falsifications, i.e., there are
admitted patients that are not prepared for treatment within the designated
time or, until they are prepared, they are mistakenly re-triaged, the MTGC of
the query needs to be negated: ζ′1 ∶= (n1,¬ψ1). Evaluated overH[7] in Figure 4.4,
ζ′1 returns one match involving pm2 and paired with the temporal validity
V = [7,∞), i.e., from time point 7 onward, the procedure for the patient with
pID = 2 does not conform to the guideline.
The answer set over H[7] contains a match for pm2, i.e., a falsification, al-

though, based on the interval of U[0,60], the object may potentially satisfy ψ1 in
the future—for example, an addition of an instance of DrugService with the
appropriate pID could occur in the next few seconds. If indeed this is the case,
then the answer returned at time point 7 will have become a false positive.
This issue affects a class of properties C comprising MTGCs whose non-

definiteness window w (see Section 3.3) is not zero, i.e., properties with future
temporal operators, for which a decision at time point τmay depend on a future
time point τ′. For properties outside C, a decision for τ can be made at τ and
therefore decisions within the period that has been observed are definite. In
runtime monitoring, properties in C constitute the most challenging cases as
the satisfaction decision at τ may have to be postponed until τ′; thus, the running
example used in the thesis, i.e., ψ1, belongs to this class. The experimental
evaluation presented in Chapter 5 contains properties in C that resemble ψ1
as well as properties outside C. Technically, a reformulation of a ψ ∈ C into a
ψ′ /∈ C may be possible. However, as also mentioned in Section 3.3.2, such a
reformulation may be non-trivial.
In this section we equip Evaluation in InTempowith a technique to obtain an

effective answer set Te that, although based on T, can be used for the detection
of definite falsifications of properties in C that resembleψ1.The effective answer
set Te relies on the non-definiteness window w: it excludes a period based on
w from the temporal validity of a match, effectively postponing returning a
decision about time points in this period until the decision is definite—see also
Corollary 3.3.1. We define the effective answer set Te below, where we assume
that w has been computed according to Definition 3.3.2.

Definition 4.2.1 (effective answer setTe). Let ζ ∶= (n,ψ) be a query inLT andw
be the non-definiteness window ofψ. Moreover, let hHτD be a sequence of RTMH

instances, with D ∈ N+. Given an answer set T(H[τ i]) for ζ over the RTMH

4.2 query evaluation 57

H[τ i] with i ∈ [1,D], the effective answer set Te(H[τ i]) for ζ overH[τ i] is equal to
T(H[τ i]) if i =D; otherwise,Te(H[τ i]) is the set of all tuples (m,V∩[0, τi−w])
such that (i) (m,V(m,ψ)) ∈ T(H[τ i]) and (ii) V(m,ψ)∩[0, τi −w] /= ∅.

The effective answer set Te is intended for histories whose duration is larger
than the non-definiteness window, i.e., τD >w. Moreover, the use of Te relies
on the MTGC containing no unbounded future operators—see Section 3.3.2.
The following theorem states that over a sequence of RTMH instances with

more than one member, for intermediate instances whose τi ≥w, the Te(H[τ i])
is equal to the restricted definite temporal validity answer set TdV,r(H[τ i]); this
answer set is obtained based on the definite answer set Td (see Section 3.3.4) but
(i) only includes pairs of matches with their (non-empty) temporal validity Vd ,
i.e., their temporal invalidity is omitted, and (ii) Vd is restricted to the period
[0, τi −w].

Theorem 4.2.1 (equality of effective answer set and restricted definite temporal
validity answer set over sequence of RTMH instances). Let ζ ∶= (n,ψ) be a
query in LT, w be the non-definiteness window of ψ, and hHτD be a sequence of
RTMH instances withD ∈ [2,∞]∩N+, and i be an index in [k,D− 1]∩N+ such
that τk ≥w. Moreover, let TdV,r(H[τ i]) be the restricted definite temporal validity
answer set over H[τ i] which has been obtained from the definite answer set Td

but contains (i) only pairs of matches with their temporal validity Vd with Vd /= ∅
and (ii)Vd is intersected with [0, τi −w]. Then, the effective answer set Te(H[τ i])
is equal to TdV,r(H[τ i]), i.e.,

Te(H[τ i]) = T
d
V,r(H[τ i])

Proof. Based on the more general Theorem 3.3.2 which shows that, for τ ∈
[0, τi −w], the satisfaction decision for τ in H[τ i] is equivalent to definite satis-
faction decision for τ in H[τ i]. The computations of V and Vd over H[τ i] rely
on the computations of Z and Zd over H[τ i], respectively. Theorem 3.2.1 and
Theorem 3.3.3 show that satisfaction relation and definite satisfaction relation
over H[τ i] are soundly reflected in Z and Zd over H[τ i], respectively.

As TdV,r excludes the definite falsification computation F, obtaining an effec-
tive answer set with F requires the evaluation of a separate query ζ′ ∶= (n,¬ψ),
i.e., a query searching for matches which falsify ψ, in parallel to ζ ; this parallel
evaluation would require the construction of a separate TVGDN for ζ′.
For an example of the effective answer set, consider the query ζ′1 evaluated

over H[7] mentioned above; the effective answer set Te does not return the
match involving pm2. Provided that no relevant change occurs that satisfies ψ1
in the preceding period, Te starts returning the match in query evaluations
from time point 67 onward, i.e., when it has become a definite falsification.
If the MTGC ψ of a query is of the form ¬χ, i.e., monitoring for falsifications,

and not in C, then Te returns answers timely; the temporal validity of matches
may not include all definite time points, however all time points that are in-
cluded in answers are definite. If the MTGC is monitoring for satisfactions,
Te introduces a delay in returning definite answers. For example, Te for ζ1
over H[5] does not contain the match involving pm1 whose temporal validity

58 querying approach

is [5,∞); however, due to the definition of an RTMH which does not allow
changes to creation timestamps, the match will exist at time point 5 and its
temporal validity will include this time point for the rest of the execution; nev-
ertheless, this match will start being included in Te from time point 65 onward.
For MTGCs that monitor for satisfactions, T may be more appropriate, as it
will return matches timely, although their temporal validity may contain some
time points for which the satisfaction decision may change. Alternatively, if
used in monitoring for falsifications, T will return a possible falsification as
early as possible, e.g., as is the case with the example based on H[7], and can be
thus used as the basis for the generation of warnings.
The timing of changesmay incur further delay. For example, in the evaluation

of the query ζ′1 above, if a change does not occur at time point 67 but at a later
time point, then the falsification is returned with a delay—see also Example 3.3.1.
This type of delay however is inherent in reactive monitoring and, in practice,
it is often handled by an appropriately timed periodic event generated by the
monitoring procedure. In the context of adaptation, a delay in issue detection
is often acceptable or even anticipated by adaptation schemes, as they are often
based on a time-triggered feedback loop [see 91, 131]. An adaptation scheme
based on InTempo can schedule a query evaluation, i.e., issue detection, in the
future based on the non-definiteness window; regardless of whether a change
occurs, this scheduled evaluation canmake sure that a falsification of properties
that resemble ψ1 is not delayed.

4.3 maintenance

As noted previously, an RTMH maintains two views on the state of the modeled
architecture. Similar to traditional RTMs, one view is of the current state, as
the RTMH contains all entities present in the system. The other view, which
extends traditional RTMs, is that of the entire history of the state. The view of
the entire history is enabled by (i) creation (cts) and deletion (dts) timestamps
(ii) retaining entities which have been deleted from the modeled system, the
deletion being instead reflected in the dts of the entities in question.
This wealth in insight comes at a cost, which in certain cases might be

problematic. On the one hand, regulations originating in the context of the
system, such as retention policies for privacy-sensitive patient data in healthcare,
e.g., [118, 119], may require that certain data has to be discarded after a certain
period. On the other hand, remembering each system change causes the RTMH

to constantly grow in size. The growth rate may need to be curbed to reduce
the memory consumption or to avoid cluttering the model with obsolete data
which may deteriorate performance of the pattern matching—as constantly
more entities have to be considered.
For these cases, the remedy lies in knowing when and what to forget. In this

section, we present an optional extension to InTempo, which is performed
by Maintenance (see Figure 4.1) and allows for constraining the size of the
history encoding. This constrained encoding contains entities that either have
not yet been deleted in the modeled system or have been deleted but are rele-
vant to query evaluations. Compared to the unconstrained representation, the
constrained representation may afford increased memory efficiency.

4.3 maintenance 59

4.3.1 Discarding Irrelevant History from an RTMH

In case the dts of an entity is equal to∞, the component modeled by the entity
is still present in the architecture and thus, due to causal connection, may not
be removed from the RTMH. This is not true for entities whose dts /= ∞, as
those have been removed from the modeled system. Nevertheless, because of
the presence of temporal operators and their timing constraints, entities might
be relevant to query evaluations for a certain period even after they have been
deleted from the modeled system. When this period elapses, deleted entities
may be considered for removal from the RTMH.
For example, let ζ2 ∶= (n1.1,ψ3) be a query with ψ3 ∶= ◊[2,5]∃n1.2. Assume that

ζ2 is evaluated over H[7] in Figure 3.2. The entity d1 has been deleted, yet it
is relevant to the evaluation of the query. Given the timing constraint of the
temporal operator in ζ2, the same would stand for an evaluation over H[10]:
although deleted, d1might still be relevant to the query evaluation. The entity
d1 is no longer relevant at a time point τ, only for RTMH instances whose
associated timestamp exceeds the sum of the right end-point of the timing
constraint of ◊[2,5] and τ. We define this time period of relevance as follows.

Definition 4.3.1 (relevance windowWr). Given a (finite) set of MTGCs Ψ, the
relevance windowWr , i.e., the period for which deleted entities may be relevant
to query evaluations, is determined as follows. First, wr for an MTGC ψ ∈Ψ is
computed:

wr(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(I)+max(wr(χ),wr(ω)) if ψ = χUI ω

r(I)+max(wr(χ),wr(ω)) if ψ = χSI ω

max(wr(χ),wr(ω)) if ψ = χ∧ω

wr(χ) if ψ = ¬χ

wr(χ) if ψ = ∃(n, χ)

0 if ψ = true

(4.1)

For Ψ, the relevance window is given by:

Wr(Ψ) =max
ψ∈Ψ

wr(ψ) (4.2)

If the constrained representation option is enabled,Wr is computed prior to
the evaluation of a query. Based onWr and following Evaluation, Maintenance
performs what resembles garbage collection and prunes every entity e in an
RTMH whose dts exceeds a certain threshold. This task yields a pruned RTMH,
denoted by P and defined practically as follows.

P[τ i] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

H[τ i] if i = 1

{e ∣ e ∈H[τ i]∧ e .dts ≥ τi−1−2Wr} otherwise
(4.3)

The pruning threshold τi−1−2Wr spans a period for which deleted entities can
be relevant to the query evaluation at τi , i.e., [τi−1−Wr , τi]. However, to ensure
soundness, the threshold also covers a preceding period, i.e., [τi−1−2Wr , τi−1−
Wr), which is motivated in the following section.

60 querying approach

time

𝜏!"#
𝜏!$#

𝜏!

V
𝜏!

W𝜏! −
W𝜏!$# −

V
𝜏!

T 𝜋
𝜏!T 𝜋

𝜏!

+1

+1

W𝜏! − 2

𝑟
𝑟

𝑟

Figure 4.5: Projected answer sets Tπτ i and Tπτ i+1 obtained for two consecutive time
points τ i and τ i+1

4.3.2 Projected Answer Set

Given a history hτ , i.e., a sequence of timed changes whose last member has the
time point τ, an H[τ] constitutes a complete encoding of all changes from the
beginning of hτ up to and including the time point τ. The removal of entities
from P[τ] renders this encoding partial. In the following, it is shown that all
changes to the temporal validity V of a match can be detected both over a
sequence of complete encodings and over a sequence of partial encodings.
However, the V returned by partial encodings is restricted to a certain period,
to correspond to the representation of the history duration being similarly
confined. This restriction is captured by a projected answer set Tπ . Intuitively, a
Tπ projects the V of a match at τi , i.e., Vτ i , on a period in which Vτ i might have
changed (captured byWr) since the previous event at τi−1, that is, the interval
Γ = [τi−1−Wr , τi].

Definition 4.3.2 (projected answer set Tπ). Let ζ be a query from a set of
queries Q in LT andWr the relevance window of the MTGCs in Q. Moreover,
let Tτ i(H[τ i]) be the answer set for ζ over the RTMH H[τ i]. Finally, let Γ =
[τi−1−Wr , τi]. Then, the projected answer set Tπτ i(H[τ i]) is defined as follows.

Tπτ i(H[τ i]) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Tτ i(H[τ i]) if i = 1

{(m,V∩Γ)∣(m,V) ∈ Tτ i(H[τ i])} otherwise
(4.4)

Tπ is defined identically for a pruned RTMH P[τ i].

For a match (m,V), all past changes that could have affected its Vτ i are
within [τi −Wr , τi]. Let Tπτ i+1 be the answer set at the time point of the change
after τi ; Tπτ i+1 covers the interval [τi −W

r , τi] as well as the interval [τi , τi+1].
Therefore, with respect to τi+1, all time points inVτ i+1 before τi−Wr are definite,
i.e., no change after τi+1 could affect them. This fact also motivates the pruning
threshold: A deleted entity is kept in P as long as its dts is larger or equal to the
earliest time point for which its existence could affect the earliest time point
for which V is non-definite.
See Figure 4.5 for an illustration. The Tπτ i (the dotted grid) returns a tuple
(m,Vτ i)whereVτ i contains all those time points which are definite with respect
to τi . Analogously, so does Tπτ i+1 (the gray grid) with Vτ i+1 . At τi+1 however, all

4.3 maintenance 61

time points before the pruning threshold τi −2Wr (that were non-definite in
Tπτ i) have become definite.
The following theorem states that an aggregation of the projected answer sets

Tπτ i and T
π
τ i+1 would still contain definite time points in Vτ i even if the pruning

of an entity at τi+1 would cause these time points to be excluded from Vτ i+1 .

Theorem 4.3.1 (equality of aggregation of projected answer sets over a sequence
of pruned RTMH instances and a sequence of complete RTMH instances). Let
ζ ∶= (n,ψ) be a query in LT, hHτD be a sequence of complete RTMH instances
withD ∈N+, and hPτD the corresponding sequences of pruned RTMH instances.
Then, the aggregation of the projected answer set Tπ for ζ over hHτD is equal to the
aggregation of Tπ for ζ over hPτD , that is:

D

⋃
i=1
Tπτ i(H[τ i]) =

D

⋃
i=1
Tπτ i(P[τ i]) (4.5)

Proof (idea). By induction overD. See Section A.3.8 for the proof.

Since the history captured in P is partial, queries over P can compute the
temporal validity of matches only for a restricted period of time—captured by
the projected answer set. This is in contrast to queries over a complete RTMH

H where the temporal validity of matches is computed for the entire history.
The loss of information in P compared to H is a trade-off for the potential of
increased memory-efficiency and faster query evaluation times over P.
Moreover, the deletion of entities may result into matches being removed

from P, therefore P is intended for use-cases where matches are only relevant
for a short period of time after being returned, e.g., in self-adaptation, where a
match constitutes an adaptation issue that is to be fixed as soon as possible.
As discussed in Section 4.2.3, for some properties the use of the effective

answer Te set from Definition 4.2.1 may be more appropriate. Therefore, we
define a projected effective answer set Tπ,e which, similarly to Tπ and T, restricts
the temporal validity of Te to a certain period of the history.

Definition 4.3.3 (projected effective answer set Tπ,e). Let ζ be a query from
a set of queries Q in LT,Wr the relevance window of the MTGCs in Q, and
w the non-definiteness window of the MTGC of ζ. Moreover, let hHτD be a
sequence of RTMH instances with D ∈ N+, and Teτ i(H[τ i]) be the effective
answer set for ζ over an RTMH H[τ i] with i ∈ [k,D− 1] and τk ≥w. Finally, let
Γ′ = [τi−1−Wr , τi −w]. Then, the projected effective answer set Tπ,eτ i (H[τ i]) is
defined as follows.

Tπ,eτ i (H[τ i]) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Teτ i(H[τ i]) if i = k

{(m,V∩Γ′)∣(m,V) ∈ Teτ i(H[τ i])} otherwise
(4.6)

Tπ,e is defined identically for a pruned RTMH P[τ i].

Similarly to Theorem 4.3.1, the following lemma states that the aggregation
of Tπ,e over a sequence of pruned RTMH instances and a sequence of complete
RTMH instances returns the same results.

62 querying approach

Lemma 4.3.1 (Equality of aggregation of projected effective answer sets over
a sequence of pruned RTMH instances and a sequence of complete RTMH

instances). Let ζ ∶= (n,ψ) be a query in LT, hHτD be a sequence of complete
RTMH instances withD ∈N+, and hPτD the corresponding sequences of pruned
RTMH instances. Then, the aggregation of the projected effective answer set Tπ,e
for ζ over hHτD is equal to the aggregation of Tπ,e for ζ over hPτD , that is:

D

⋃
i=1
Tπ,eτ i (H[τ i]) =

D

⋃
i=1
Tπ,eτ i (P[τ i]) (4.7)

Proof. The proof proceeds similarly to Theorem 4.3.1, i.e., by induction over
D. Intuitively, this is justified by Te being a restricted version of T, while the
restriction concerns a time period which is not affected by pruning.

4.3.3 Maintenance with Dynamic Sets of Queries

InTempo supports dynamic sets of queries over a complete RTMH. The follow-
ing functionality enables their support by a pruned RTMH.
If the option to perform maintenance is enabled,Wr has to be re-computed

every time the set of queries has been altered. If the newly computedWr hasn’t
changed or has been decreased, the query evaluation proceeds as usual. Else, if
Wr has increased, the derivation of a sound answer set for the newly introduced
queries cannot be ensured for a period of time that is equal to the difference
of the previous value of 2Wr to the newly computed one. In this case, the
queries for which a sound answer set cannot be guaranteed, are not admitted
for evaluation until the length of the history represented by the RTMH suffices
for soundness.
For example, assume an evaluation of the previously introduced query ζ2

with Ψ = {ψ3} andWr = 5. At a later evaluation, the query ζ1 is added to the
input queries which leads to Ψ = {ψ1,ψ3}. The time point of addition is marked
by τ of the RTMH H[τ]. The alteration induces a re-computation of Wr to
W′r = 60. The value has been increased therefore, based on τ as well as the
difference 2W′r −2Wr , ζ1 is admitted for evaluation only when an RTMH H[τ′]
is induced with τ′−τ ≥ 2W′r −2Wr , i.e., in this case, at least 110 time units after
its addition.

4.3.4 Considerations

In most cases, a pruned RTMH would be more memory-efficient than a com-
plete one. In fact, against a constant rate of incoming events, pruning would
yield an RTMH whose memory consumption would be bounded. However, if
the event rate does not have a fixed upper bound, the memory consumption,
although mitigated by pruning, would still increase over time.
In case an MTGC contains an unbounded past operator, i.e., with r(I) =∞,

an RTMH is not pruned as the temporal requirement refers to the entire history.
Pruning may reduce the size of the matching search space and thus may

improve the pattern-matching time during the query evaluation. On the other
hand, pruning requires the usage of additional resources, which should be
taken into consideration with respect to the overall evaluation performance.

4.4 application scenario: history-aware self-adaptation 63

First, pruning requires the storage and update of a priority queue of deleted
entities in the RTMH; the queue should be iteratively polled such that entities
whose dts exceeded the threshold can be detected and pruned. Second, every
time an entity is pruned from the RTMH, queries have to be reevaluated based
on the pruned RTMH.

4.4 application scenario: history-aware self-adaptation

A Self-adaptive System (SAS) is able to modify its own behavior or structure in
response to its perception of its context, itself, and its requirements [43]. Self-
adaptation can be generally achieved by adding, removing, and re-configuring
components as well as connectors among components in the system architec-
ture [105], therefore, the architecture view is typically considered an appropriate
abstraction level [62]. Causal connection renders RTMs a natural choice for
representing the architecture, as adaptations can be realized as changes on the
RTM, which are subsequently mirrored in the system [see 158].
An established method of instrumenting self-adaptation is to equip the

system with an external feedback control loop, i.e., an adaptation engine. A well-
known reference model for the design of an adaptation engine is theMAPE-K
feedback loop [93]. The MAPE-K loop monitors and analyzes the system, and,
if needed, plans and executes an adaptation of the system, where the adaptation
is defined in terms of architecture changes. All four MAPE activities (whose
first letter is underlined above) are based on knowledge. The feedback loop
maintains an RTM as part of its knowledge to represent the current state of the
architecture. Thus, the activities of the MAPE-K feedback loop operate on the
RTM to perform self-adaptation.
An SAS can be adapted via adaptation rules. Adaptation rules represent fine-

grained units of change that can be performed on the underlying system. The
application of an adaptation rule adapts the system from its current state to a
new state. Adaptation rules are of the form “if condition then action”. A condi-
tion checks whether an adaptation issue is present, whereas an action describes
a desired adaptation. If the condition is met, the action is taken. The feedback
loop captures changes (during Monitor); checks whether changes cause an
adaptation issue (during Analyze); and, if the condition is satisfied, plans and
executes an adaptation action (during Plan and Execute, respectively) [101].
The graph-based encoding of architectural RTMs allows for a realization of

adaptation rules in form of GT rules where adaptation issues are expressed via
patterns which, in turn, characterize graph queries, i.e., the LHS of the rule;
graph queries are evaluated during analysis and the RTM is adapted via in-place
GTs based on the RHS of the rule [63].
An RTMH captures the current state of an RTM as well as the history of the

state. Queries in LT are capable of formulating conditions, i.e., the LHS, in
adaptation rules which include temporal requirements on the history of evolu-
tion of the pattern. By replacing the RTM in a MAPE-K loop with an RTMH,
the knowledge of the feedback loop is extended to cover history-awareness;
based on the RTMH, InTempo can be used to evaluate temporal queries which,
in this context, correspond to checking adaptation conditions with temporal
requirements, over a sequence of changes to the architecture. Query answers

64 querying approach

Adaptation Engine

INTEMPO

RTMH
events

queries via adaptation rules

adaptations

System
+

Context

Figure 4.6: Overview of InTempo and system interaction for adaptation

can be used to plan adaptations. Therefore, InTempo may serve as the basis for
an adaptation engine that enables history-aware self-adaptation—see Figure 4.6.
Figure 4.7 depicts a detailed view of a history-aware adaptation engine based

on the MAPE loop. The engine operates in two phases: the setup and the (self-
adaptation) loop. Operationalization of InTempo (the trapeze shape containing
“O” in Figure 4.7) is performed during setup. Evaluation (“E”) is performed in
the Analyze activity. The engine contains aMaintain activity—an extension
compared to a canonical MAPE loop—during which Maintenance of InTempo
(“M”) is performed.

4.4.1 Self-adaptation Scenario for SHS

In the following, we build on the SHS introduced in Example 2.1.1 to envisage a
(self-)adaptation scenario that enacts a medical instruction. The instruction
imposes temporal requirements on the operation of the SHS which are checked
and enforced by the five activities of the adaptation loop described below. The
scenario is based on the medical guideline on the treatment of sepsis [108,
126], a potentially life-threatening condition. We focus on the basic instruction
that reads: “between ER Sepsis Triage and IV Antibiotics should be less than 1
hour” [108]. Note that, from the viewpoint of the system, this timing constraint
in the instruction is soft, as medical guidelines often provide contingency
plans in case a deadline is inadvertently missed, e.g., [162, p. 11]. Therefore, a
system adaptation could occur after the deadline is missed and still remedy the
situation.
The event log in [108] contains real medical records from a hospital where

patients diagnosed with sepsis were treated according to the guideline. The log

Sensors Effectors

Adaptation Engine

System + Context

LoopSetup

O

Input/Output order

Analyze
E

Monitor

Plan

Execute

Maintain
M

RTMH

Figure 4.7: History-aware adaptation engine

4.4 application scenario: history-aware self-adaptation 65

s:SHSService
status=sepsis
pr1:Probe

u!

status= anti
pr2:Probe

s:SHSService

u!.!

pm:PMonitoringService

s:SHSService

u!.#

status= release
pr3:Probe

pm:PMonitoringService

pm:PMonitoringService

{pm.pID = d.pID}

d:DrugService

Figure 4.8: Patterns for self-adaptation in SHS—the usage of the same label for vertices
denotes that vertices refer to the same entity in the RTMH

contains a multitude of events, we, however, focus on those that correspond
to actions prescribed in the guideline, i.e., ER Sepsis Triage, IV Antibiotics,
and Release, which correspond to a patient being triaged as an emergency
sepsis case, an intravenous (IV) administration of antibiotics for sepsis, and a
patient being released from the emergency ward, respectively. Events in the log
are timestamped. Based on the SHS metamodel (Figure 2.1) and the available
hospital log, we envisage the procedure described in the guideline enacted by
the SHS.
In detail, an ER Sepsis Triage event is simulated as a Probe with status

sepsis, generated from an instance of PMonitoringService pm which has
been invoked by an SHSService s. An IV Antibiotics event is simulated as a
Probe with status anti from a DrugService d which has also been invoked
by s. The patterns capturing the occurrence of these events in our SHS are
depicted in Figure 4.8. To make sure these two actions are referring to the same
patient, the pattern u1.1 contains an attribute constraint (in braces) that checks
whether the pID of d and pm are equal.
Based on u1 and u1.1 in Figure 4.8, the instruction is formulated in LT by

the query MG1 ∶= (u1,¬ψMG1) which searches for falsifications of the MTGC
ψMG1 ∶= ◊[0,3600]∃u1.1. That is, the query searches for matches of u1, which
identifies a (previously untreated) patient with sepsis, for whom, in the next
hour, there is no match for pattern u1.1, which identifies the administration
of antibiotics to the same patient. The binding of elements in u1.1 from u1 is
illustrated in Figure 4.8 by using the same labels for vertices, e.g., for pm. The
system is assumed to track time in seconds.
In order to challenge our approach with a more complicated scenario, we

also search for falsifications for a variation of MG1. Namely, that no patient
with sepsis should be released prior to being treated, a requirement that re-
sembles process compliance checks and refers to Release events in the origi-
nal log. The requirement is captured by the query MG2 ∶= (u1,¬ψMG2) with
ψMG2 ∶= ¬∃u1.2U[0,3600]∃u1.1. The pattern u1.2 is similar to u1 and depicted in
Figure 4.8. We describe a desired adaptation loop for the SHS according to
these instructions.

Monitor During the monitoring activity, the recent events (new readings cap-
tured by Probes since the last invocation of the loop) together with their

66 querying approach

cts and dts values are reflected in the RTMH, which is an instantiation
of the Architecture. Therefore, the RTMH is updated to represent the
current system structure extended with the relevant temporal data.

Analyze The activity detects adaptation issues. In this context, these are cap-
tured by falsifications of ψMG1, i.e., the existence in the RTMH of struc-
tural patterns that reflect sepsis cases (u1) without associated antibiotics
(u1.1) within one hour; or, for ψMG2, the existence of sepsis cases that
are either not administered antibiotics within one hour or they are er-
roneously released (u1.2) without first being timely treated. Hence, we
evaluate (separately) the queries MG1 and MG2. The evaluation com-
prises the executions of the TVGDNs obtained by Operationalization
during the setup of the engine. In the context of an SHS, self-adaptation
only supports the medical procedure, i.e., it first waits for clinicians to
perform the actions in the guideline. Only when there is no more time
is self-adaptation enabled. The effective answer set (see Section 4.2.3)
returned by InTempo fulfills this expectation, as it restricts the temporal
validity of matches based on the non-definiteness window; thus, the
period in which the decision for time points in this answer set could
change has elapsed.
The matches returned by InTempo in this activity constitute adapta-
tion issues, and similar to [63], adaptation-related types (Annotation
in Figure 2.1) are used to facilitate the adaptation. During Analyze, the
PMonitoringService instance which has been involved in the detec-
tion of an adaptation issue is annotatedwith an Issue instance.Therefore,
to ensure that only new falsifications are matched, u1 is extended to check
that no instance of Issue is associated with the matched instance of
PMonitoringService. Issue instances, as well as instances of other
adaptation-related nodes in Figure 2.1, are created by appropriately typed
GT rules which are capable of setting their cts and dts.

Plan and execute In planning, the engine searches for sepsis Probes annotated
with an instance of Issue. Upon finding them, it attaches an Effector
to the service to which the Probe instance is attached. The Execute
activity of the loop searches for effectors and upon finding them takes
an adaptation action, i.e., administers antibiotics to the patient via a
DrugService instance. This adaptation action is also reflected in the
RTMH by creating an AdaptationAction instance which is associated
to the handled Issue instance.

Maintain This activity is optional. If enabled, Maintenance uses the relevance
window obtained by Operationalization during setup and prunes the
RTMH, i.e., it removes all entities that have been deleted and are irrelevant
to query evaluations. Following the removal of entities, the TVGDN is
re-executed to update matches.

4.5 summary

This chapter presented InTempo, a querying approach for temporal queries
in LT. InTempo is a collection of three interdependent operations: Opera-

4.5 summary 67

tionalization, Evaluation, and Maintenance. Operationalization (Section 4.1)
transforms a (declarative) temporal query into a network of sub-queries which
is amenable to incremental evaluation (contribution C3.1 in Section 1.3). Evalu-
ation (Section 4.2) performs the query evaluation. Maintenance (Section 4.3)
is an optional operation that prunes deleted entities from the RTMH that are
not relevant to query evaluations, thus affording a memory-efficient history
encoding (C3.2). Section 4.4 presents a typical application scenario which in-
tegrates these operations in an adaptation engine that is rendered capable of
history-aware adaptations.
Operationalization relies on a novel formal framework, presented in Sec-

tion 4.1, which decomposes a query in LT into a directed acyclic graph consist-
ing of sub-queries called TGDN. Each sub-query characterizes a GT rule, also
called a marking rule, as the RHS of the rule creates a marking node that marks
matches for the LHS of the rule.Themarking node has a distinguished attribute
called duration which stores the satisfaction span of the match. The framework
captures the conditionals in the computations for operators in MTGL by Amal-
gamated Marking Rules. Given a query in LT, Operationalization constructs a
network according to the framework whose result computes the answer set T
of the query. We summarize the introduced concepts below.

• TGDN (denoted by g): Given a query (n,ψ) ∈LT, a TGDN is a GTS consist-
ing of a set of basic and amalgamated marking rules derived by ψ.

• Satisfaction span set (Σ): A declarative definition of a set containing all
matches for a pattern n in an RTMH paired with their satisfaction span Z.

• TGDN result (G): A set containing matches marked by marking nodes cre-
ated by the root of g paired with the duration of their marking nodes.

• Terminal rule (rt): The terminal rule corresponds to the query pattern n and
is dependent on the root of the TGDN g.

• TVGDN (gV): The network g following the addition of the terminal rule.

• TVGDN result (GV): A set containing matches marked by marking nodes
created by the terminal rule paired with the duration of their marking nodes.

Given the query (n,ψ), Lemma 4.1.1 shows that, over a given RTMH, the TGDN
result G constructed by Operationalization is equal to the satisfaction span set
Σ. Theorem 4.1.1 shows that the TVGDN result is equal to the answer set T of
the query. Section 4.1.6 presents the corresponding results for a construction
of a network that computes the definite temporal validity and invalidity.
The TVGDN is amenable to incremental execution, thereby facilitating the

incremental evaluation of the query. The incremental execution is performed
by Evaluation in InTempo, as shown in Section 4.2. However, the degree of
incrementality would be significantly reduced in the execution of a TVGDN
for definite computations, as the execution would require that all satisfaction
spans of matches are updated for every instance of the RTMH.
Aiming to preserve a high degree of incrementality, InTempo is based on

the construction of a TVGDN for (non-definite) satisfaction and introduces
the effective answer set Te in Section 4.2.3. Te is based on the answer set T,

68 querying approach

thus it does not require the satisfaction span of matches to be updated for
every instance of the RTMH. On the other hand, for certain properties, T could
include some false positives. To avoid this, Te does not return results until
they have become definite. Thus, Te affords highly incremental evaluations and
definite results, at the cost of delivering these results with a delay for certain
properties. Theorem 4.2.1 shows that Te is equal to a version of the definite
answer set Td (see Section 3.3.4) where the temporal validity is restricted based
on the non-definiteness window.
Maintenance prunes deleted entities from the RTMH that are not relevant to

query evaluations and may thus reduce the size of the encoded history. Pruning
relies on the relevance window (Wr), which is computed based on the timing
constraints of temporal operators in an MTGC. To correspond to the extent of
history covered by a pruned RTMH, we introduce the projected answer set Tπ
which restricts the temporal validity for matches based onWr . Theorem 4.3.1
shows that, given a sequence of pruned RTMH instances a and a sequence of
unpruned RTMH instances b, the union of projected answer sets over a is equal
to the union of projected answer sets over b.
Before concluding this chapter, we summarize the introduced answer sets

for LT and their characteristics in Table 4.5; we omit the projected effective
answer Tπ,e from Definition 4.3.3 which is a combination of Tπ and Te .

Table 4.5: An overview of the introduced answer sets for LT and their characteristics

Notation Name Reference Characteristics

T - Definition 3.2.3
highly incremental
featured in InTempo
may contain false positives

Td definite Definition 3.3.4
reduced incrementality
not featured in InTempo
definite answers

Te effective Definition 4.2.1
highly incremental
implemented based on T

definite but possibly delayed answers

Tπ projected Definition 4.3.2
highly incremental
featured in InTempo
temporal validity is restricted

5EXPER IMENTAL EVALUAT ION

This chapter presents the experimental evaluation of InTempo.The experimen-
tal evaluation aims to measure the performance and assess the fulfillment of the
objective for increased scalability (see Section 1.3). In this context, scalability
refers to the capability of InTempo to mitigate the dependence of query evalua-
tion times and memory consumption on the size of the history. The objective
is assessed based on a comparison of the performance of InTempo to two
state-of-the-art solutions from the RV and MDE communities. Performance is
measured in two case-studies: a simulation of the history-aware self-adaptation
scenario for the SHS introduced in Section 4.4, and a partial execution of the
Social Network Benchmark (SNB) by the Linked Data Benchmark Council.
Section 5.1 presents a prototypical implementation of InTempo.
Section 5.2 presents the input data, queries, and experimental setting for the

SHS. The SHS evaluation is based on both real and synthetic data; we have
generated the synthetic data using sophisticated statistical methods, thereby
enabling the measurement of performance of InTempo over increasing history
sizes which preserve the statistical characteristics of the real log.
Section 5.3 presents the input data, queries, and experimental setting for the

SNB. The SNB log files allow for a more extensive experimental evaluation of
InTempo as they involve more complex, realistic, and considerably larger graph
structures. LT is used for more complex queries than those in the SHS case-
study which stem from a domain which is significantly different to healthcare.
In Section 5.4, we conduct the experiments with two state-of-the-art tools

from the RV and MDE communities and measure their performance.
Section 5.5 discusses the results and the extent to which they fulfill the objec-

tive for increased scalability. Moreover, following the experimental evaluation,
the section reflects on the advantages and limitations of InTempo compared
to the state-of-the-art. Finally, this section discusses the threats to the validity
of the experimental evaluation.

5.1 implementation

Our implementation of InTempo is based on the Eclipse Modeling Framework
(EMF) [51, 149], which is a widespread MDE technology for creating software
systems. For pattern matching, we employ the Story Pattern Matcher [66, 114]
using the search plan generation strategy presented in [5]. The Matcher uses
local search (see Section 2.2.5) to start the search from a specific element of
the graph and thus reduces the pattern matching effort [88]. It uses an Object
Constraint Language (OCL) [127] checker for checking attribute constraints.
For interval computations, we use an open-source library [72]. For the removal
of elements from the RTMH, we transparently replace the native EMF method,
via a JAVA agent, with an optimized version which reduces the potentially
expensive shifting of cells in the underlying array list and renders the removal
more efficient. The implementation is available as an EMF plugin in [113]. For

69

70 experimental evaluation

import ’http://mdelab.de/intempo/examples/shs/1.0’

($u1, !(true U[0,3600] E $u11))

declarations{
u1{ pr1:Probe

pm:PMonitoringService
s:SHSService
pm -probes-> pr1
s -connected-> pm
[OCL:"pr1.status=‘sepsis’"]}

...
}

Listing 5.1: The query MG1 in ITQL (excerpt from Listing B.2)

the experimental evaluation, we developed two variants based on the plugin:
IT, with pruning disabled, and IT+P, with pruning enabled.
The plugin, henceforth simply called InTempo, can be used either via the

EMF user interface or via an API. The API enables the utilization of InTempo
answers in other applications, e.g., an adaptation engine. InTempo offers two
operation modes intended for different scenarios: one mode supports the eval-
uation of a temporal query over a user-provided RTMH, whereas the other
assumes that, instead of being captured by an RTMH, data about the system
execution have been captured in an event log; in this mode, InTempo supports
the mapping of log entries to RTMH modifications based on a metamodel and
an event mapping (see design-time artifacts in Section 4.1.1), and the subse-
quent query evaluation following each modification. More information on the
operation modes of the plugin are presented in Section B.1.

InTempo supports the evaluation of queries in LT. To facilitate the specifica-
tion of such queries, we introduce the InTempo Query Language (ITQL). ITQL
supports the definition of Story Patterns, i.e., structural patterns that should be
matched by the Matcher, via declarations. Declarations aim at making the speci-
fication of queries more concise and are used for building Story Patterns during
the loading of an ITQL file. Listing 5.1 shows an excerpt of the specification
of the query MG1 from Section 4.4.1 in ITQL; the specification relies on the
declaration for the pattern u1 from Figure 4.8 and the metamodel in Figure 2.1.
The query syntax in ITQL complies to the syntax of LT. Thus, following u1,
is the AC of the query, i.e., the negation of ψMG1 ∶= ◊[0,3600]∃u1.1, formulated
in ITQL without the eventually abbreviation. To facilitate the formulation of
intervals, ITQL support shorthand notations for referring to days, months, and
years, as well as for specifying open end-points of intervals. The grammar of
ITQL is shown in Section B.1.1.
For the mapping and translation of log entries into model modifications, we

introduce the Events-to-Patterns Specification Language (E2P). An E2P speci-
fication consists of mappings between events, i.e., lines of comma-separated
attribute-value pairs, and actions that should be performed on the RTMH. E2P
supports five actions (formulated as verbs): adds, to add an entity and optionally
assign values to the attributes of the added entity; adds-ref, to add a connector
between two entities;modifies, tomodify the attribute values of an entity; deletes
and deletes-ref, to delete an entity and a connector, respectively, from the RTMH.
To accommodate linked data, E2P allows for the indexation of added entities

5.2 timely sepsis treatment for the smart hospital system 71

import ’http://mdelab.de/intempo/examples/shs/1.0’

...

"ER Sepsis Triage":{adds pm:PMonitoringService >> PMServices(*p1) [ID=*p1]
adds pr:Probe >> SProbes(*p1) [ID=*p1 status="sepsis" cts=*p3]
adds-ref pm -probes-> pr
adds-ref hospital -ownedServices-> pm}

...

Listing 5.2: An E2P mapping for the ER Sepsis Triage event in the SHS case-study

so that later events can refer to modifications that have been processed earlier.
Listing 5.2 shows an example of an E2P mapping; the mapping describes the
actions that should be performed on the RTMH based on the event ER Sepsis
Triage in the SHS case-study—see Section 4.4.1. The mapping relies on the
SHS metamodel in Figure 2.1. We briefly explain an adds action: the event ER
Sepsis Triage entails the addition of an entity pm of type PMonitoringService;
this entity is added to an index called PMServices at a position that is equal to
the value of the attribute-value pair at the first position of the log entry; the
attribute ID of the created entity gets the same value. Indexing the created entity
pm allows for later modifications to refer to pm, e.g., the adds-ref action that
creates a connector between pm and an entity of type Probe that was created
after pm. The grammar of E2P and more information on the capabilities of the
language are presented in Section B.1.2.

5.2 timely sepsis treatment for the smart hospital system

This section presents an implementation of InTempo integrated in an adapta-
tion engine as shown in Figure 4.7. The engine is evaluated for an adaptation
scenario which encompasses the monitoring of a temporal property at runtime.
We developed a simulator of the adaptable SHS presented in Section 4.4.1. The
simulation replays events on an RTMH based on the real and synthesized event
logs described in Section 5.2.1. After each event, the temporal queries MG1 and
MG2, described in Section 4.4.1, are evaluated. Matches constitute adaptation
issues which are resolved by appropriate modifications to the RTMH.

5.2.1 Input Logs

The log used in our experiments (in the following, real log) contains 1049
trajectories of sepsis patients admitted to a hospital within 1.5 years [108]. Each
trajectory comprises a sequence of events. The events that are relevant to the
experiment are ER Sepsis Triage (ER), IV Antibiotics (IV), and Release (RE)
events. A trajectory starts with an ER event, and IV and RE events might follow.
The inter-arrival time (IAT) between two ER events defines the arrival rate
of trajectories. We used statistical probability distribution fitting to find the
best-fitting distribution that characterizes the inter-arrival times between: two
ER events (IATT), an ER and an IV (IATSA), and an ER and an RE (IATSR).
Then, we used statistical bootstrapping [44] to generate two synthetic logs, x10

72 experimental evaluation

Table 5.1: Overview of input logs: the number of events is mapped to the number
of vertices and edges created in the model; the column Deleted shows the
percentage of deletions for vertices and edges contained in the logs

Log Events (#) Vertices (#) / Edges (#) Deleted (%) Used in

real 8K 5K / 5K 100 / 100

SHS

x10 88K 58K / 58K 100 / 100
x100 874K 583K / 583K 100 / 100
M-real 21K - 100 / 100
M-x10 234K - 100 / 100
M-x100 2.3M - 100 / 100

sf-0.1 952K 900K / 3.4M 5.2 / 4.4 SNB
sf-1 10M 10.2M / 38.4M 4.3 / 3.4

and x100, with IATT values that are 10 and 100 times smaller, respectively, than
IATT values of the real log. IATSA and IATSR remain as in the real log.
As a result, x10 and x100 cover the same period of time as the real log, and

increase the trajectory density (approx.) ten and a hundred times, respectively,
allowing us to test the scalability of InTempo without altering the statistical
characteristics of the real log. The logs are available in [133] and a more detailed
description of the statistical methods employed is presented in Section B.2.1.
Each event in the logs corresponds to the creation of certain elements in

the RTMH. In order however to evaluate the performance of pruning we re-
quired that the lifespans of these elements have an end, i.e., their dts is set. This
information is not provided in the original log. Therefore, for each created
element we defined an interval after which a delete event was injected in the
logs. The intervals for Probe and Service instances are ten seconds and one
hour, respectively. The logs that contain the deletions are available in [134]. An
overview of the logs is shown in Table 5.1, where values have been rounded. As
shown by the Deleted column, all created elements are eventually deleted.

5.2.2 Experiment Design

We integrated both implementation variants, i.e., with and without pruning,
in an adaptation engine. We denote this integration by an arrow circle: IT↻,
includes the Monitor, Analyze, Plan, and Execute activity, i.e., in terms of
InTempo, the operations Operationalization and Evaluation; IT↻+P , includes
all activities above plus Maintenance, i.e., Operationalization, Evaluation, and
Maintenance of InTempo. See Figure 4.7 for an overview. The experiments1

simulate the events in the real, x10, and x100. Each experiment entails the
execution of one variant for one query, either MG1 or MG2; the specification
of the queries in ITQL are shown in Listing B.2 and Listing B.3, respectively.

1 All experiments have been conducted on an Intel E5-2643 with 256 GBs of DDR4 RAM and an
OpenJDK8 JVM.

5.2 timely sepsis treatment for the smart hospital system 73

6,
80

3

1,
97

3 59
6,

79
0

11
,3

92

68
,9

60
,2

94

11
8,

94
8

6,
64

8

1,
21

5

59
5,

70
3

7,
69

1

68
,9

52
,4

68

92
,5

83

15
5

19
0 1,
08

7

92
0 7,

82
6

5,
62

9

56
9 2,
78

1

20
,7

36

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

Real - Real - x10 - x10 - x100 - x100 -

Ti
m

e
(m

s)

Full Loop Analyze Plan & Execute Maintain

IT↻ IT!"↻ IT↻ 	IT!"↻ IT↻ IT!"↻

Input Log - Variant

Figure 5.1: Cumulative time of loop activities for MG1

Wemeasure IT↻ and IT↻+P with respect to their reaction time (or full loop
time). In this context, the reaction time is equal to the required time for one
execution of the adaptation loop, i.e., the time fromwhen an issue is detected to
when a corresponding adaptation action has been performed.Thus, the reaction
time consists of times for Analyze, Plan, Execute and, for IT↻+P , Maintain. The
time spent in Monitor, i.e., processing an event, is negligible and thus not
reported. The time required for Analyze is the query evaluation time. Time
measurements are used to assess the scalability of query evaluations times.
In each adaptation loop, we measure the memory consumed by the variants

based on the values reported by the JVM. Memory consumption is used to
assess the scalability of memory consumption.
A loop is invoked periodically based on a predefined but modifiable fre-

quency. In our experiments, based on the IATT of the logs, we set the invocation
frequency to one hour, i.e., 3600 seconds, to avoid frequent invocations where
no events are processed.The invocation frequency coincides with themaximum
delay of a falsification detection, i.e., in the worst case, a falsification will occur
at the first second after the loop and will be detected at the next invocation
which in this case is after almost one hour. Operationalization, which produces
the TVGDN and the relevance window utilized by Maintenance of IT↻+P , is
performed only once during the setup of the loop.
Each experiment is measured for either time or memory and proceeds as

follows. First, during Monitor activity, events from the logs are processed.
Each log event corresponds to certain modifications to the RTMH: an ER
Sepsis Triage event corresponds to the addition of a PMonitoringService
and a Probe instance to the model, where the attribute status of the Probe
instance is set to sepsis; an IV Antibiotics event corresponds to the addition
of a DrugService instance and a Probe instance with status anti; a Release
event is similar to the Er Sepsis Triage, except the status is set to release.
All added elements are eventually deleted by corresponding deletion events.
All mappings are defined in the E2P specification shown in Listing B.1. The
loop is invoked at the predefined intervals, triggering the Analyze activity
which executes the query. Matches constitute adaptation issues. During Plan
and Execute transformations are performed which correspond to adaptation
actions. Finally, for IT↻+P , Maintain is performed and matches are recomputed.

74 experimental evaluation

7,
78

7

2,
21

0 58
6,

45
3

14
,4

44

68
,7

51
,1

42

15
2,

76
5

7,
63

1

1,
46

9

58
5,

35
8

10
,3

18

68
,7

43
,7

05

11
9,

66
6

15
6

15
7 1,

09
5

84
9 7,

43
8

5,
94

1

58
4 3,
27

8

27
,1

57

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

Real - Real - x10 - x10 - x100 - x100 -

Ti
m

e
(m

s)

Full Loop Analyze Plan & Execute Maintain

IT↻ IT!"↻ IT↻ 			IT!"↻ IT↻ IT!"↻

Input Log - Variant

Figure 5.2: Cumulative time of loop activities for MG2

5.2.3 Results

Figure 5.1 and Figure 5.2 depict the cumulative time (in logarithmic scale) for
each of the measured loop activities and the reaction time, i.e., full loop time,
for MG1 and MG2.
As expected, the results are mainly influenced by the Analyze activity, which

is when issues are detected, i.e., queries are evaluated.The number of processed
events in the experiments with the log files real, x10, and x100 grows steadily—
see Section 5.2.1. For IT↻, this increase is mirrored in the size of the RTMH.
The Analyze time of IT↻ increases with respect to these two parameters. The
growth of the RTMH can also be seen in Table 5.5, where themaximummemory
measurement is reported for both variants. Contrary to IT↻, the pruning in
IT↻+P minimizes the size and thereby the memory consumption of the RTMH.
In fact, because the rate of created elements per period in each log does not
increase, and, over time, it is almost equal to the rate of deleted elements, the
memory consumption over real, x10, and x100 remains unchanged.
Owing to pruning, the Analyze time of IT↻+P increases at a considerably

smaller pace compared to IT↻. Pruning forces a re-computation of the answer
set, therefore, as shown in Figure 5.1 and Figure 5.2, the time Maintain requires
is non-negligible. Figure 5.3 shows the time spent in Analyze for each loop of
the two variants for the x100 log (in logarithmic scale). The pruning of RTMH

enables the Analyze time of IT↻+P to remain constant.

1.00E+00

1.00E+02

1.00E+04

0 4000 8000 12000 16000

An
al

yz
e

Ti
m

e
(m

s)

Simulation Timestamp (hrs)

			IT↻
x IT!"↻

Figure 5.3: Time for Analyze activity per variant (MG1 - x100)

5.3 trend detection for the social network benchmark 75

id : ELong
cts : ELong
dts : ELong

MonitorableEntity

id : ELong
cts : ELong
dts : ELong

MonitorableEntity

firstName : EString

Person

firstName : EString

Person [0..*]

hasCreator

[1..1]

knowsLinkknowsLink

hasMemberLinkhasMemberLink

hasTag

[0..*]

addedTo

ForumForum

PostPost

TagTag

[1..1]

​​

​​

​​
​​

​​

[0..*]
[1..1]

hasInterest
[0..*]

interests
[0..*]

[1..1]
creates

[1..1]

[0..*]

[1..1]

[1..1]

[0..*] containerOf

containedIn

​​

[0..*]

[1..1]

knowsknowsBack

Figure 5.4: Relevant excerpt of the metamodel of the SNB

5.3 trend detection for the social network benchmark

The Social Network Benchmark (SNB) from the Linked Data Benchmark Coun-
cil [103] is designed to simulate a plausible social network in operation. The
benchmark can generate data of varying sizes and provides a series of realis-
tic usage scenarios which aim at stress-testing and discovering bottlenecks in
graph-based technologies. Recent versions of the benchmark generate data
which contain both insert and delete operations [160] and can be conveniently
transformed into a stream of timestamped creation and deletion events.

Metamodel and Queries

The SNB metamodel consists of a static part, i.e., the entities City, Country,
Tag, TagClass, University, and Companywhose instances are created before
the creation of the network and are never deleted, and a dynamic part, i.e.,
the entities Person, Post, Comment, and Forum, whose instances are created
during the operation of the network and can be deleted. A relevant excerpt
of the SNB metamodel is shown in Figure 5.4—where entities in gray are
explained later in this section. In the generated data, forum memberships and
friendships are represented by links between entities. The vast majority of the
network activity comprises persons joining forums, befriending other persons,
or posting comments and replies in forums.
From the available queries in the SNB specification, we select two querieswith

a temporal dimension, namely IC4 and IC5 [55]. The (slightly adjusted) query
IC4 reads: “Given a start Person, find Tags that are attached to Posts that were
created by that Person’s friends. Only include Tags that were attached to friends’
Posts created within a year after they became friends with the start Person, and
that were never attached to friends’ Posts created before that.” Similarly to the
SHS case-study, statements in the query are captured as patterns, shown in
Figure 5.5.
The query refers to the point in time a friendship was created. Evaluating the

query would entail checking the creation and deletion timestamp of the link
that represents the friendship. InTempo does not directly support attributes in
links. Following a customary modeling technique, e.g., [97], links of interest
can be encoded as vertices. The links that represent a friendship and a forum

76 experimental evaluation

q!.!.#.#

q!
t:Tag

q!.!

q!.!.!
friend:Person

t:Tag friend:Person

start:PersonkL:knowsLink

q!.!.!.!
kL:knowsLink

q!.!.#
friend:Person m:Post t:Tag

q!.!.#.!
friend:Person m:Post

start:Person other:PersonkL:knowsLink

t:Tag m:Post

{start.id = $input}

q!.!.#.#.! {start.id = $input}

start:Person kL:knowsLink other:Person

Figure 5.5: Graph patterns used for IC4, where $input denotes an input parameter
provided to InTempo

membership are relevant to IC4 and IC5 and have been modeled as vertices
with a creation and a deletion timestamp in Figure 5.4—see KnowsLink and
hasMemberLink vertices.
Based on these patterns, we gradually compose the query inLT for IC4. Note

that the naming scheme of the patterns is based on their nesting level and time
is assumed to be tracked in seconds. We search for Tags and Persons (q1.1) that
satisfy the following three conditions simultaneously. First, they are friends
with the start Person (q1.1.1, where the start Person is a user input captured by
the pattern constraint). For this condition, it is additionally required to locate
the first time point where the friendship was created. In MTGL, this may be
achieved by the construction:

∃(q1.1.1,¬⧫(0,∞)∃q1.1.1.1)

where we leverage the knowledge that the KnowsLink will be the last vertex
created in q1.1.1, i.e., after the two Persons. The second condition requires
friends to have posted Posts with Tags where the first time point of the Post
(its moment of creation) was within the last year:

⧫[0,1y]∃(q1.1.2,¬⧫(0,∞)∃q1.1.2.1)

Note that we abbreviate the number of seconds in a year by “1y”. Finally, these
Tags have never been attached to Posts of the start Person by any other friend:

¬⧫[0,∞)∃(q1.1.2.2,∃q1.1.2.2.1)

The construction locating the first time point a pattern occurs, that is:

∃(q1.1.1,¬⧫(0,∞)∃q1.1.1.1)

5.3 trend detection for the social network benchmark 77

p!.!
friend:Person kL1:knowsLink

p!.#

p!.$
friend:Person hML:hasMemberLink f:Forum

friend:Person kL2:knowsLink fof:Person

p!.$.!
hML:hasMemberLink

p!
friend:Person f:Forumm:Post

p!.#.!
fof:PersonkL3:knowsLink

{start.id = $input}

start:Person

start:Person
{start.id = $input}

Figure 5.6: Graph patterns used for IC5

uses an unbounded temporal operator which requires that InTempo stores
the entire history and effectively disables pruning. As mentioned earlier, the
lifespan of a match is always an interval, i.e., a connected set of time points.
This characteristic makes the first time point when a match occurs unique, i.e.,
there can be no two first time points in the past. Therefore, in this particular
construction, it is unnecessary to check the sub-condition over the entire history.
Instead, the interval of the operator can be reduced to a minimal interval, i.e.,
⧫(0,1), which returns the same result while allowing InTempo to avoid storing
the entire history. In the following, we abbreviate this construction by the
operator exists-first:

∃(q1.1.1,∃ f q1.1.1.1)

In summary, in LT, IC4 is captured by the query IC4 ∶= (q1,ψIC4) with ψIC4:

∃(q1.1,
∃(q1.1.1,∃ f q1.1.1.1)∧⧫[0,1y]∃(q1.1.2,
∃ f q1.1.2.1∧¬⧫[0,∞)∃(q1.1.2.2,∃q1.1.2.2.1)))

(5.1)

The patterns for IC5 are shown in Figure 5.6. The (slightly adjusted) query
reads: “Given a start Person, find the Forums which that Person’s friends and
friends of friends (excluding start Person) became members of in the two months
before the friendship was created. Return all Posts in the Forums created by
the start Person’s friends or friends of friends within that period.”. In LT it is
captured by the query IC5 ∶= (p1,ψIC5) with ψIC5 ∶

(∃p1.1∨∃(p1.2,∃p1.2.1))∧(⧫[0,2m]∃(p1.3,∃ f p1.3.1)) (5.2)

Note that the number of seconds in two months has been abbreviated by “2m”.
The formulations of IC4 and IC5 in ITQL are available in Section B.3.2.

78 experimental evaluation

5.3.1 Input Logs

Wehave used the data generator of the SNB to generate data for two scale factors:
sf-0.1 and sf-1, which create a network of 1.5K and 11K Persons, respectively. In
total, 328K vertices and 1.5M edges are created in sf-0.1, and 3.2M vertices and
17.3M edges in sf-1. The generated data span a period of ten years, from 2010
to 2020. We have captured the creation and deletion timestamps of insert and
delete operations into log files of timestamped events. For our experiments,
forummemberships and friendships are also encoded as vertices and, therefore,
the relevant inserts and deletes in the generated data are similarly represented
by events which create or delete instances of HasMemberLink and KnowsLink,
respectively. This brings the total of vertices and edges created by the log for
sf-0.1 to 900K and 3.4M, respectively. The log for sf-1 creates 10.2M vertices
and 38.4M edges—see the overview in Table 5.1. The logs are available in [134].
The E2P specification for log events is available in Section B.3.1.
The generated data contains two stages: the functioning stage which entails

the creation of the entire network and a small percentage of deletions, spanning
from 2010 to 2013, and the shutdown stage which contains only deletions and
destroys the network, spanning from 2013 to 2020. We have added a start-up
stage to the beginning of the log which creates the static part of the network,
e.g., Tags and Countries, at the beginning of the epoch (timestamps 0 to 7).

5.3.2 Experiment Design

We envision a scenario where the answers to queries IC4 and IC5 are utilized
to detect trends, and to provide a member of the network with dynamic recom-
mendations or warn themember for suspicious behavior in their network when
the member logs in. Recommendations can be built based on the returned
Tags from IC4 and warnings can detect abnormally many new memberships
by new friends, returned by IC5. Therefore, in our experiments we evaluate the
queries periodically on each (simulation) day, which simulates a daily login on
the network by the member.
According to the typical SNB execution scenario [103], we first process a

large number of operations of the operational stage (the first 35 months) such
that a large starting RTMH has formed before the queries are evaluated. This
initial phase of the experiment corresponds to roughly 800K events in sf-0.1 and
8.8M events in sf-1. The queries are evaluated once per day for the remaining
month in the operational stage. After the operational stage, the shutdown stage
comprises numerous bulk deletions which span the remaining period, i.e., 7
years, and destroy the network. This would not constitute a realistic setting for
the scenario, as only deletions would be processed. Hence, the experiments only
run until the beginning of the shutdown stage. The percentage of the elements
that are deleted in the operational stage is shown in Table 5.1.
We evaluate the performance of IT (no pruning) and IT+P (with pruning).

IT+P is only executed for IC5, as IC4 contains an unbounded past operator, i.e.,
it refers to the entire history. Depending on the log, each query is evaluated for
a different start person. This was done to ensure that the start person would be
actively involved in query evaluations. To choose the start person, we created a

5.3 trend detection for the social network benchmark 79

Table 5.2: Query evaluation time (cumulative) for IC4 and IC5 (secs - rounded)

IC4 IC5

sf-0.1 sf-1 sf-0.1 sf-1

IT 9 77 11 169
IT+P - - 10 174

list that sorted network members according to their number of friends (larger
to smaller) and randomly picked a person from the top half. The log sf-0.1 is
executed for the person with id= 483 and sf-1 for the person with id= 361.
In the initial phase, before the periodic evaluation begins, the TVGDN is

populated with all matches in the starting graph. The first execution of the
periodic phase updates these matches. Each variant is executed for each input
log and is measured for either query evaluation time or memory consumption.
Experiments whichmeasure timewere executed 10 times and the average values
are reported. The experiments are conducted on the same workstation as all
other experiments.

5.3.3 Results

Table 5.2 shows the cumulative query evaluation times for both IC4 and IC5.
The initial phase for IC4 and IC5 over sf-0.1 lasted approx. 18 and 39 seconds,
respectively. Over sf-1, the initial phase for IC4 and IC5 lasted 145 and 363
seconds, respectively. The effect of pruning in IT+P is marginal as only a few
deletions, i.e., less than 5%, occur in the log—see Table 5.1. On the other hand,
the overhead of pruning is also reduced. Given that no pruning occurs for the
first 35 months, a relatively lengthy pruning takes place after the first execution
in every experiment. For instance, the first pruning for sf-1 lasts approx. 47 secs.
The average duration of all other executions of pruning is 287ms. Nevertheless,
the accumulation of this overhead combined with the small percentage of
deletions, causes IT+P to require more time than IT over sf-1.
Figure 5.7 and Figure 5.8 show the query evaluation time for IC4 over sf-0.1

and sf1, respectively, in detail; Figure 5.9 and Figure 5.10 show the query eval-

0

150

300

450

600

01.12.12 11.12.12 21.12.12 31.12.12

Q
ue

ry
 E

va
lu

at
io

n
Ti

m
e

(m
s)

Simulation Time (dd.mm.yy)

of

 N
od

es
 (K

)

1

0.5

0

IT 											

Relevant
Nodes Added

Figure 5.7: Query evaluation time (IC4 - sf-0.1)

80 experimental evaluation

0
1500
3000
4500
6000

01.12.12 11.12.12 21.12.12 31.12.12

Q
ue

ry
 E

va
lu

at
io

n
Ti

m
e

(m
s)

Simulation Time (dd.mm.yy)

6

4

2

0

of

 N
od

es
 (K

)

IT 											

Relevant
Nodes Added

Figure 5.8: Query evaluation time (IC4 - sf-1)

0

400

800

1200

1600

01.12.12 11.12.12 21.12.12 31.12.12

Q
ue

ry
 E

va
lu

at
io

n
Ti

m
e

(m
s)

Simulation Time (dd.mm.yy)

of

 N
od

es
 (K

)2

1

0

of

 N
od

es
 (K

)

IT 											

IT!"x
Relevant
Nodes Added

Figure 5.9: Query evaluation time (IC5 - sf-0.1)

uation times for IC5. The figures also show the number of relevant nodes (in
thousands) added per period: Relevant nodes are those included in the patterns
of the TVGDN nodes constructed for the queries, e.g., for IC5, instances of
HasMemberLink, Person, KnowsLink, and Post. Generally, larger execution
times correspond to periods with a larger number of relevant nodes. On aver-
age, over the larger sf-1 log and for IC5 that allows for pruning, the InTempo
variants handled 15K additions of relevant nodes per period; the average query
evaluation time was 5.7 secs with IT and 5.8 secs with IT+P.
Table 5.3 shows the memory consumption of the two variants. Due to the

small number of deletions, the memory consumption of IT+P is only slightly
decreased. We measured that only loading the RTMH in memory consumed
2.6GBs for sf-0.1 and 44.4GBs for sf-1.

0

3000

6000

9000

12000

01.12.12 11.12.12 21.12.12 31.12.12Q
ue

ry
 E

va
lu

at
io

n
Ti

m
e

(m
s)

Simulation Time (dd.mm.yy)

IT 											

IT!"

21

14

7

0

of

 N
od

es
 (K

)

x

Relevant
Nodes Added

Figure 5.10: Query evaluation time (IC5 - sf-1)

5.4 comparison to state-of-the-art 81

Table 5.3: Memory consumption (max) for IC4 and IC5 (MBs)

IC4 IC5

sf-0.1 sf-1 sf-0.1 sf-1

IT 7040 72389 12631 133880
IT+P - - 12158 130384

5.4 comparison to state-of-the-art

InTempo processes a sequence of events, maintains a history encoding, and ver-
ifies whether this encoding satisfies a temporal logic formula.This functionality
resembles the objective of RV, where an online algorithm verifies whether a
sequence of events representing a system execution satisfies or falsifies a tempo-
ral property. The algorithm is required to maintain an (internal) representation
of the history of the execution, similar to the RTMH. We therefore use the
state-of-the-art RV tool MonPoly to acquire a baseline for the performance of
IT↻ and IT↻+P in detecting issues during the activity.
RV tools are typically not intended for usage with structural models. InMDE,

storing past versions of a (structural) modelmay be achieved by amodel indexer,
i.e., a solution which monitors file-based repositories such as Git or SVN, stores
models or model elements of interest to a database, and maintains an index,
i.e., an efficient representation, of the model evolution which is amenable to
model-element-level querying [7]. The indexer Hawk integrates a time-aware
database and provides temporal primitives which can be used to query the
history of a model. Using these primitives, we formulate the queries MG1 and
MG2 and compare the performance of Hawk to that of InTempo.

5.4.1 Runtime Verification with MonPoly

MonPoly [13, 14] is a command-line toolwhich notably combines an adequately
expressive specification language with an efficient incremental monitoring
algorithm. It has been the reference in evaluations of other RV tools [46,
82] and among top-performers in an RV competition [12]. Its specification
language is based onMetric First-Order Temporal Logic (MFOTL) [13] which
uses first-order relations to capture system entities and their relationships.
MonPoly processes a sequence of timestamped events, maintains an internal
representation of the system execution, and checks whether it falsifies a given
formula. Unlike an RTM, representations in RV tools are created ad-hoc , and
they are pruned by default, i.e., they contain only the data that is relevant to
the formula and has not been checked yet.
The semantics of MFOTL are point-based, i.e., the logic assesses the truth of

a formula only at the time points of the events in a sequence and not for the
entire time domain as interval-based logics such asMTGL.Therefore, a result in
MFOTL is not accompanied by a temporal validity as in InTempo. Furthermore,
for certain formulas, point-based semantics may yield counter-intuitive results
which disagree with interval-based semantics—on the other hand, it may allow

82 experimental evaluation

for more efficient monitoring algorithms compared to those based on interval-
based semantics [see 15]. Although the difference in interpretations may affect
more extensive evaluations, it does not affect the conditions of the queries
discussed in Section 4.4.1.
Encoding a graph pattern in MFOTL requires an explicit definition of the

expected (temporal) ordering of the events that corresponds to the order of
creation of the elements in the simulation. To emulate pattern matching, we
would therefore have to specify an MFOTL formula that would consider all
possible events of interest as a start for matching the pattern and then search in
the past of the execution or in the present for the rest of the events of interest.
Leveraging the knowledge of the actual order in which events occur in the sim-
ulation, we simplify the formulas for MonPoly by specifying only the correct
ordering. This creates an advantage for MonPoly in the comparison with our
implementation which we deem is justified as MonPoly is not intended for
pattern matching. For ensuring that a match is returned only if the lifespans of
entities overlap, we use a construction suggested by the MonPoly authors [13]:
for a creation event c(a) and a deletion event d(a), we encode the lifespan of
the entity a by ¬∃d(a)S[0,∞)∃ c(a).

5.4.2 Indexing and Querying the History of an RTM with Hawk

Hawk [61] integrates a time-aware graph database [80] which tracks changes
between (timestamped) repository commits and, therefore, equips Hawk with
the capability of querying the history of a model. Hawk represents history
by versions of types and type instances. A new version of a type is created
every time a type instance is created or deleted; the initial version of a type has
no instances and types are never removed from the indexer. A new version
of an instance is created every time one of its features changes; instances are
removed from the indexer when they are deleted from the model. Versions are
timestamped based on the timestamp of the repository commit that created
the version in question.
Hawk formulates queries in the Epsilon Object Language (EOL), which is

founded on OCL [127, 159]. Hawk extends EOL with support for temporal
primitives such as time, getVersionsFrom(τ), eventually, which enable retrieving
the timestamp of a version, obtaining a specific collection of versions based
on their timestamp τ, or making assertions over a collection of versions. EOL
supports methods native to EMF which obtain the container of an instance or
the contents of one of its features.

5.4.3 Query Specifications and Conducted Experiments

In the following, we use the languages of MonPoly and Hawk to specify the
queries in the case-studies. We begin with the queries MG1 and MG2 in SHS,
i.e., MG1 ∶= (u1,¬ψMG1) with ψMG1 ∶= ◊[0,3600]∃u1.1 and MG2 ∶= (u1,¬ψMG2)
with ψMG2 ∶= ¬∃u1.2U[0,3600]∃u1.1—see Section 4.4.1.
We map MG1, in a straightforward manner to its MFOTL equivalent, i.e.,

the language of MonPoly. The pattern u1 is enclosed by an existential quanti-
fier, other operators remain intact, and relations are used instead of patterns.

5.4 comparison to state-of-the-art 83

A straightforward mapping is not possible for MG2 however, as MonPoly
restricts the use of negation in this case. It does so for reasons of monitora-
bility, as the tool assumes an infinite domain of values, and the negation of
the existence of u1.2 at a given time point when it does not exist is satisfied by
infinite values and is therefore non-monitorable by MonPoly—note that the
use of negation is unrestricted for since, as with the lifespan construction in
Section 5.4.1. In the conducted experiments, we compare to MonPoly only for
MG1. The translations in MFOTL are available in Section B.2.4.
We proceed with Hawk. The query MG1 is translated in EOL by obtaining a

set c1 with all Probe instances with status set to sepsis, created within a certain
time window. Subsequently, we obtain a collection c2 with the container of all
instances in c1 (the instance of PMonitoringService). For each instance in c2,
we obtain its container (the instance of SHSService). We collect all contents
of the connected feature of the SHSService, i.e., all the connected services,
that are of type DrugService in a collection c3 and, for each instance in c3, we
check whether the contents of its probes feature include a Probe instance with
status set to anti, whose timestamp satisfies the temporal constraints. The
query MG2 is identical except it also checks whether an instance of Probewith
status release exists in the period between an instance with status anti and
an instance with status sepsis. The EOL queries are available in Section B.2.5.
Attempting to evaluate MonPoly and Hawk with the SNB logs results into

considerable practical difficulties. In the SHS case-study, we optimize pattern
matching by MonPoly by arranging the ordering of relations in the MFOTL
property, leveraging the knowledge on the order in which these events occurred
in the simulation. Applying the same optimization for SNB is impossible as there
is no fixed order in which some patterns could occur, e.g., the friendship and
the membership in q1.1.2.2. Therefore, the MonPoly properties would have to
feature many alternative orderings which would deteriorate the performance of
the tool. For Hawk, the initial phase of the experiment required generating and
indexing approx. 800K and 8.8M (large) models for sf-0.1 and sf-1, respectively.
Saving these models as XMI files and indexing them was quite slow: only a
few tens of thousands of models had been processed after several hours. These
difficulties indicated that the tools are notmeant for this setting and, using them
nonetheless would compromise the conclusions drawn by the experimental
evaluation. Therefore, the tools are excluded from the SNB experiments.

5.4.4 Input Logs

Regarding MonPoly, we encoded the SHS metamodel by relations, following
generally standard practices [see 124]. We translated all simulated logs, i.e., real,
x10, x100, into sequences of events based on this encoding. An overview of the
translated logs is shown in Table 5.1—translations are prefixed with an “M-”.
The logs are available in [134].

Hawk supports models created in EMF which allows us to re-use the SHS
metamodel in Figure 2.1 as well as the E2P specification and the relevant com-
ponent of our implementation to map events in the log files real, x10, and x100
to model modifications. The modifications are identical to those created in the
experiments with InTempo.

84 experimental evaluation

5.4.5 Experiment Design

MonPoly processes the events in the file and, for each event, updates its inter-
nal representation of the system behavior and its result. As explained earlier,
the representation only retains data which are (temporally) relevant to the
formula.This algorithm resembles the experiments for InTempo and, therefore,
MonPoly is executed only once per experiment. Each experiment entails the
execution of the tool with one translated log and the property MG1—as MG2
cannot be monitored by MonPoly. The latest MonPoly version at the time of
writing is used (1.1.10) and run on the same machine as the implementation
variants. For measuring the memory consumption and execution time, we use
the output generated by MonPoly.
For Hawk, the experiments proceed similarly to those conducted for In-

Tempo—see Section 5.2.2. Each experiment entails the evaluation of eitherMG1
or MG2 and is measured for either time or memory. Following the processing
of an event, i.e., model modifications, the model is saved as an XMI file, i.e., the
standard EMF file extension, and committed to a programmatically created Git
repository. The timestamp of the commit is set to the timestamp of the event.
Hawk is invoked periodically at the same time points of the loop invocations
of the InTempo variants. In every invocation, Hawk is first requested to update
its index and then to evaluate the query. Given the periodic invocation, queries
obtain only the necessary versions of Probe such that no adaptation issues are
missed. That is, the translations use the primitive getVersionsFrom(τ−2Wr),
which retrieves all instances from τ up to 2Wr , with τ the timestamp of the latest
change andWr the relevance window —see Section 4.3.1. The latest history-
aware Hawk version at the time of writing is used (2.2.0) and run on the same
machine as InTempo. Query evaluation time and memory consumption are
measured similarly to InTempo. The time required for saving and committing
the XMI file is omitted.

5.4.6 Results

The results for the cumulative issue detection time (in seconds) for the three
logs are shown in Table 5.4. The issue detection time refers to the amount of
time each tool or variant requires to produce the correct result: for IT↻, this
is only the sum of the times for Analyze, i.e., the query evaluation time, for

Table 5.4: Issue detection time (cumulative) for MG1 and MG2 (secs - rounded)

MG1 MG2

real x10 x100 real x10 x100

IT↻ 7 596 68952 8 585 68744
IT↻+P 2 10 113 2 14 147
Hawk 730 57685 >250000 726 57534 >250000
MonPoly 2 283 189638 - - -

5.5 discussion 85

Table 5.5: Memory consumption (max) for MG1 and MG2 (MBs)

MG1 MG2

real x10 x100 real x10 x100

IT↻ 48 268 2479 58 365 3442
IT↻+P 28 28 28 30 30 30
Hawk 194 1201 - 194 1204 -
MonPoly 17 39 269 - - -

every invocation; for IT↻+P , however, it is the sum of Analyze and Maintain for
every invocation. Similarly, the sum of the indexing and the querying time for
every invocation is reported for Hawk. The execution of Hawk over x100 was
stopped after almost three days, hence no results are reported.
Issue detection with MonPoly is faster than IT↻ for real and x10. However,

MonPoly is slower than IT↻ for x100. IT↻+P outperforms MonPoly over the
larger logs x10 and x100. Besides the suitability for querying structure, another
reason is that, as shown in Table 5.5, pruning significantly reduces the size of
the RTMH and hence its memory consumption. As a result the time spent for
pattern matching is decreased. Hawk is the slowest in detecting issues and the
most costly in terms of memory. The size of the database of Hawk on disk was
deemed irrelevant and is not reported.
Figure 5.11 (in logarithmic scale) shows the speedup of IT↻ over Hawk, i.e.,
(hk/it), with hk the issue detection time of Hawk for an invocation and it
the issue detection time of IT↻ for the same invocation. The speedup value
of 1 is marked by a dashed line. IT↻ was faster than Hawk in all invocations
except the plot points below the dashed line—which amounts to approx. 1.2%
of the total number of invocations. Figure 5.12 shows the speedup of IT↻+P
over Hawk, where once more the speedup value of 1 is marked by a dashed
line. Hawk was always slower than IT↻+P . In fact, their difference increases as
the simulation proceeds, as pruning in IT↻+P gradually decreases the size of
the RTMH. Plot points where the speedup of IT↻ is larger than the speedup
of IT↻+P are invocations in which query evaluation of IT↻ took a very small
amount of time, i.e., less than a millisecond; although the query evaluation
time in these invocations was similar for IT↻+P , the time spent in pruning added
an overhead which reduced speedup.

MonPoly only outputs the cumulative time required for monitoring the log;
the time per event is not reported, hence a comparison of the speedup was not
possible.

5.5 discussion

We discuss the results of the experimental evaluation with respect to the objec-
tive of increased scalability compared to the state-of-the-art—see Section 1.3.
Then, in light of the experimental evaluation results, we reflect on advantages
and limitations of InTempo. We conclude the experimental evaluation with a

86 experimental evaluation

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

0 4000 8000 12000

Sp
ee

du
p

Simulation Timestamp (hrs)

Figure 5.11: Speedup of issue detection time of IT↻ over Hawk (MG1 - x10)—values
below the dashed line indicate invocations for which IT↻ was slower than
Hawk

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

0 4000 8000 12000

Sp
ee

du
p

Simulation Timestamp (hrs)

Figure 5.12: Speedup of issue detection time of IT↻+P over Hawk (MG1 - x10)

discussion of the threats to the validity of the experimental evaluation and the
measures taken to mitigate them.

5.5.1 Fulfillment of Objective for Increased Scalability

We assess the fulfillment of the objective for increased scalability based on the
query evaluation times and memory consumption.
Regarding query evaluation times, we perform a comparison among the

issue detection times of IT↻, that used a complete history encoding, IT↻+P , a
variant that used a pruned history encoding, and two state-of-the-art tools: the
RV tool MonPoly, with which we emulated pattern matching with relations,
and the model indexer Hawk. By issue detection time, we refer to the time
required to return sound results, i.e., query evaluation time for IT↻, query
evaluation time plus pruning time for IT↻+P , execution time for MonPoly, and
indexing time plus query evaluation time for Hawk. Generally, both IT↻ and

5.5 discussion 87

IT↻+P outperform Hawk, and IT↻+P also outperforms MonPoly. IT↻ is slower
than IT↻+P and MonPoly, however it operates on a complete history encoding,
and it is therefore capable of computing the precise validity of an answer over
the entire history at any point in time. Hawk, which shares this ability, is slower
than IT↻. We can therefore conclude that query evaluation times of InTempo
scale better than the state-of-the-art. Issue detection times were also relatively
fast with respect to the invocation frequency in the SHS case-study. Although
stronger claims on this aspect require further investigation, these times indicate
that InTempo may serve as a basis for more sophisticated adaptation schemes.
We perform a similar comparison regardingmemory consumption. IT↻+P con-

sumes smaller amounts of memory than IT↻ while delivering the same results
over the entire history. Moreover, owing to pruning, the memory consumption
of IT↻+P remains constant in all experiments. IT↻ and IT↻+P are more memory-
efficient than Hawk in all experiments. IT↻+P is more memory-efficient than
MonPoly for larger logs, i.e., x10, x100 which indicates increased scalability.
Except for serving as a baseline for the variant with pruning, IT↻ covers other

important use-cases where pruning might be infeasible or undesirable. For
instance, the queries of interest might change often and thus relevance windows
cannot be derived a priori—as historical data might be relevant to another
query in the future. Another example is when the incurred cost of pruning
on the loop execution time is undesirable. Finally, a third possible scenario is
postmortem analysis like self-explanation in self-adaptive systems [19] where
the system is required to explain adaptation decisions in its entire history—in
our example, IT↻ is faster and more memory-efficient than Hawk, which is
intended for such use-cases [60, 121]. It should be noted that, given the database
back-end and the offline use-cases, minimizing memory consumption may
not be a primary focus for Hawk. Moreover, by storing versions of types and
type instances, Hawk implicitly stores the history of types, links, and attribute
values, which would require a manual encoding in InTempo.
The SNB log files allowed for a more extensive evaluation of InTempo as they

involved more complex, realistic, and considerably larger graph structures. LT
is used for more complex queries than those in the SHS case-study which stem
from a domain which is significantly different to healthcare. The execution of
InTempo for two scale factors of the benchmark indicates that, for the specific
experimental setting, the query evaluation time of InTempo in the smaller
scale factor scaled well in the larger scale factor. This evaluation allows for
indirect comparisons with other tools in the future—as well as future versions
of InTempo.
A GDN stores all intermediate query results. During the network execution,

only nodes affected by model modifications are executed which, combined
with local search, makes for an incremental evaluation framework which is
optimized for fast query evaluations. This feature is emphasized in the SNB
experiments where the structure of the RTMH, in contrast to the SHS case-
study, is amenable to local search; owing to local search, pattern matching may
skip large parts of the RTMH that are unaffected by modifications. Therefore,
in relation to the number of events and added vertices (see Table 5.1), the query
evaluation times were considerably fast.

88 experimental evaluation

On the other hand, given the size of the patterns in SNB queries and the
number of matches, storing all intermediate results has an adverse effect on
memory consumption. The effect was aggravated by TGDNs featuring many
nodes whose LHS is the context pattern.These nodes find and store matches
that have already been found and stored by other nodes in the network. For
example, IC5 features many such nodes, with some of them redundantly storing
matches of elements which are in great quantities in the data, e.g., Posts.

5.5.2 Advantages and Limitations

From a purely technical viewpoint, adequately expressive RV solutions like
MonPoly are capable of representing an architectural state and detecting issues
which concern the evolution of the state. Nevertheless, the lack of inherent
support for the representation of structure, renders the use of MonPoly in this
context problematic: Transferring the architecture to the relation-based repre-
sentation of MonPoly resulted into an overly technical encoding; matching
a pattern comprising events in a relatively efficient manner was only possible
because the exact order of the occurrence of these events was known a priori;
representing the lifespan of an entity required a technical construction in the
formula which deteriorated performance; finally, translating one of the proper-
ties which concerned the prohibition of the existence of a pattern into MFOTL
was not possible due to the syntax restrictions of MonPoly. These leads in-
dicate that MonPoly and similar RV tools are suboptimal for graph-based
representations and graph-based querying, and therefore they cannot replace
RTM-based solutions in architectural adaptation schemes.
In the presented experimental setting, InTempo outperformed Hawk and

MonPoly. Nonetheless, the level of maturity of the two tools surpass the
prototypical implementation we present. Hawk supports various modeling
technologies, including EMF. It also seamlessly supports the storage of the his-
tory of attributes, links, and types. Although, its database back-end is expected
to yield slower access times than an in-memory history representation, it offers
other advantages, e.g., increased scalability with respect to the size of the mod-
els it could store, which may benefit other settings but were not explored in our
evaluation. Both Hawk and, to a lesser extent, MonPoly, support monitoring
the evolution of a value, e.g., aggregating the value of an attribute for each query
evaluation andmonitoring whether the sum exceeds a limit. We plan to address
this limitation by equipping the TVGDN with auxiliary nodes used to encode
input parameters as constraints that are checked during pattern matching.
As demonstrated by the SNB experiments, InTempo requires that attributes,

types, and links whose evolution is of interest are encoded as entities. For the
SNB experiments, this meant that two links in the original metamodel were
encoded as entities, which roughly tripled the number of vertices in the RTMH

compared to the model normally created by sf-0.1 and sf-1. Although this is a
customary modeling technique for EMF-based implementations, other tools,
such as Hawk, handle the encoding in a manner transparent to the user.
Originally, the creation timestamp in SNB is captured by a vertex or edge

attribute to which queries may refer directly. Therefore, the original queries
IC4 and IC5 contain timing constraints based on the physical time, e.g., “before

5.5 discussion 89

October 2010”. We adjusted these constraints to logical time, e.g., “in the last
two months”, as references to physical time are not currently supported byLT—
and typically are not provided by logic-based languages, e.g., MFOTL. Hawk
is able to express such references to physical time. A related limitation is that
InTempo opts for the TVGDN construction which is highly incremental but,
when monitoring for falsifications of properties that resemble MG1, may return
non-definite answers; in order to exclude non-definite answers, InTempo can
postpone returning answers whose temporal validity is within a certain period
of time to ensure that enough time has passed for the answers to be definite—
see Section 4.2.3. This technique is effective when monitoring for falsifications
of properties that resemble MG1; however, the technique should not be used
when monitoring for satisfactions of such properties, as it imposes a delay in
returning answers that are definite. We plan to make Operationalization of
InTempo capable of detecting whether an MTGC monitors for falsifications; if
not, Operationalization will automatically disable the delaying of answers.
Queries in SNB draw from SQL-based languages and their statements resem-

ble SQL queries. Their translation into a temporal logic like MTGL required a
certain level of familiarity with temporal logics and resulted into non-trivial
MTGCs. We plan to equip LT with constructions that facilitate such transla-
tions, e.g., the exists-first abbreviation we introduced in Section 5.3. However,
there are certain features of SQL-based languages which are typically not of-
fered by logic-based languages, e.g., aggregations and limiting or sorting of
results—MFOTL stands out as it offers the capability of numerical operations
such as aggregation. Related aspects in the SNB queries have been omitted
from our formulation of IC4 and IC5 in LT.
The SNB experiments indicated that larger TVGDNs may require a signifi-

cant amount of memory. We plan to investigate whether the context patterns
used in nodes can be optimized so that memory consumption is reduced.

5.5.3 Threats to Validity

We organize this section based on the types of validity in [163], i.e., conclusion,
internal, construct, and external.

Threats to Conclusion Validity

Threats to conclusion validity refer to drawing incorrect conclusions about
relationships between an experiment and its outcome, for instance, by reporting
a non-existent correlation or by missing an existent one.
Wemitigated the possible impact of threats to conclusion validity by carefully

selecting the experimental data; the log files used were either real (real log in
the SHS evaluation), synthesized based on real data by employing statistical
bootstrapping (x10 and x100), or generated by an independent benchmark
(sf-0.1 and sf-1 in the SNB evaluation). Our synthesis method is documented
in [133].
Each SHS experiment essentially executed the same query over an increasing

event sequence for thousands of times, therefore yielding measurements of an
adequately large size. For the SNB,we conducted the experimentsmeasuring the
query evaluation time repeatedly and reported the averages of values. Moreover,

90 experimental evaluation

we studied the benchmark characteristics and attempted to refine statements
on the relationship between measurements and conclusions: For instance, in
the SNB evaluation, we reported on the number of total additions of relevant
vertices instead of the number of events per period.

Threats to Internal Validity

In this context, threats to internal validity are influences which might have
affected metrics, i.e., the query evaluation time and the memory consumption.
In the following, we describe the measures that were taken to minimize such
threats.
The experiments measured these metrics separately and systematically via a

controlled simulation of an SHS and the partial execution of a benchmark. Mul-
tiple logs were used with an increasing event rate which evaluated the InTempo
variants over an increasing load; all other aspects were kept identical: in the
SHS case-study, the variants used the same metamodel and the same Monitor,
Plan, Execute activities per experiment; similarly, the SNB experiments used
the same metamodel, the same event sequences, and the same starting graph
per scale factor. Both sets of experiments translated log events into model
modifications. The experiments for Hawk used the same logs and translations
as InTempo.The experiments for MonPoly entailed the systematic translation
of events into relations based on fixed rules.
All experiments were performed on the same machine and, during the

experiment, no other (active) task was run on the machine.The values reported
in the results of the experiments for InTempo variants and Hawk are based
on the values reported by the JVM:The value of free memory was subtracted
from the value of total memory. Before measuring memory consumption, we
always suggested a garbage collection to the JVM.The values for MonPoly are
based on statistics provided by the tool itself, which in turn relies on standard
utilities available in UNIX operating systems.

Threats to Construct Validity

Threats to construct validity refers to situations where the used metrics do not
actually measure the construct, i.e., concept.
In order to minimize threats to construct validity, we used the standard

metrics of query evaluation time and memory consumption, measured in con-
ventional ways. We have ensured that these metrics were used in experiments
that returned sound results. First, the detection of falsifications in the logs by
the variants in the SHS evaluation has been manually double-checked by the
author and confirmed by MonPoly and Hawk. Additionally, the answers for
the queries in the SNB evaluation have been confirmed by JAVA code. Finally,
we have provided formal arguments to substantiate the claims on soundness of
computation of temporal validity and the detection of all changes to temporal
validity despite pruning the history representation.

Threats to External Validity

Threats to external validity may restrict the generalization of our evaluation
results outside the scope of the conducted experiments. In the following, we

5.5 discussion 91

discuss threats which could influence the generalization of the experimental
setting and measurements.
Regarding the experimental setting, we have mitigated threats to external

validity by creating the metamodel of the SHS case-study based on the artifact
in [161], a peer-reviewed self-adaptation exemplar that has been used for the
evaluation of solutions for self-adaptation.Moreover, the simulation used either
real data, or data that was synthesized based on the real data, and enacted an
instruction from a real medical guideline [126].
Similarly, the SNB experiments were based on the output of an established

benchmark which employs sophisticated, well-documented methods for gen-
erating realistic data. Queries are similarly designed by experts to expose bot-
tlenecks and stress-test the performance of graph-based technologies. The
SNB data was generated using the default parameters, and the metamodel used
closely resembles the original—we have only added entities specific to InTempo,
i.e., the MonitorableEntity, or specific to the evaluation, i.e., links of interest
were encoded as entities. We made minor modifications to the data which
fixed a few consistency issues, i.e., deletions occurring before creations, which
probably stem from the fact that deletions in the output of the benchmark are
a rather new feature that is still under development [103, 160].
Regarding the generalization of the performance measurements of InTempo

variants, we have conducted two evaluations based on considerably different
application domains. The evaluations featured metamodels and models which
differed with respect to size and graph characteristics: the SHS data corre-
sponded to a relatively simple star structure which demonstrated the effects
of pruning; the SNB data corresponded to a rather large graph with numer-
ous inter-connections which resembled real social networks. The SHS queries
showed the advantages of a graph-based temporal logic for architectural run-
time monitoring, while the SNB queries explored innovative use-cases of this
temporal logic. Our implementation performed solidly in both settings and its
results were emphasized via the comparison to MonPoly and Hawk.
We have applied the following optimizations to our implementation. For

the removal of elements from EMF models, we transparently replaced the
potentially expensive native EMF method with an optimized version. The re-
placement was done via a JAVA agent which was used for both Hawk and
InTempo. The two evaluations were rather different with respect to the evolu-
tion of the RTMH: SHS started with a single vertex, whereas SNB started with a
significantly large graph. Hence, we configured the Story Pattern Matcher, the
pattern matching tool used by InTempo, with a different strategy for search
plan generation for the two evaluations. This was done to expedite the experi-
ments and after taking into consideration that the performance of InTempo
over the SNB logs would not be compared to Hawk or MonPoly.
On the comparison, we note thatMonPoly is not intended for patternmatch-

ing. Our emulated pattern matching, although optimized, might have room for
improvement. MonPoly relies on a point-based interpretation while InTempo
reasons over intervals which can lead to discrepancies between interpretations
in more extensive comparisons [see 15]. One of the main reasonsMonPoly was
chosen for the comparison is the compatibility of MTGL and MFOTL which
allowed for a direct mapping of temporal operators and, therefore, reduced the
risk of introducing any bias in translations. Based on this mapping, MonPoly

92 experimental evaluation

could not monitor one of the properties used in the experiments. There might
exist equivalent monitorable MFOTL formulas, the syntax of which however
would not match that of the MTGC.
We used Hawk in a manner compliant to the examples on the website of the

tool [50] at the time of writing. Hawk offers features which could potentially
improve the performance of the tool. For example, EOLoffers a syntax extension
that supports patternmatching. Hawk supports a method to create annotations,
i.e., predicates over the occurrence of elements or the values of their attributes.
Annotations are updated in each indexation, thus rendering the index capable
of accessing annotated elements via a lookup—however, annotations have to be
defined manually and before the indexation of the model starts. Furthermore,
an annotation cannot refer to another annotation, thus, nesting predicates is
not supported. Such optimizations, their applicability, and their trade-offs will
be investigated in our future work.

6RELATED WORK

This section discusses work related to our contributions. Based on the problem
statement in Section 1.2, we identify the following four basic dimensions in
our work: theMDE dimension, where an architectural RTM, i.e., a causally-
connected structural representation of the state of the architecture, acts as
an interface to monitor and manage a system during its execution; the Time
dimension, where the history is expressly encoded, and temporal queries are
specified and evaluated over the encoding; the Formal dimension, where con-
cepts are formalized and query answers are shown to be sound; the Scalability
dimension, where the dependence between the performance of the solution, i.e.,
query evaluation times and memory consumption, and the size of the history
is mitigated. Table 6.1 shows a list of features corresponding to each dimension;
the list is based on the objectives and requirements in Chapter 1.
The aim of the thesis is to present a systematic treatment of the problem of

evaluating temporal queries over history-aware architectural RTM at runtime.
To this end, we have introduced the query language LT for the specification of
temporal model queries that include quantitative temporal requirements on the
evolution of an architectural RTM.Moreover, we have introduced the InTempo
querying approach that supports the operationalization and the incremental
evaluation of such temporal queries over a compact representation of the his-
tory of the RTM, i.e., the RTMH. Finally, we have introduced a prototypical
implementation of InTempo based on Eclipse Modeling Framework.
Our contributions fully support the features in Table 6.1. InTempo is an

MDE approach, and therefore inherently supports model queries and architec-
tural RTMs; our implementation is compatible with model-based technologies.
Regarding the Time dimension, the RTMH constitutes a compact encoding
of the history of an architectural RTM; LT supports past and future temporal
requirements, timing constraints,1 and has interval-based semantics; based on
these semantics, we introduce the computation of the temporal validity, i.e., an
interval for which a match satisfies the temporal requirements. Regarding the
Formal dimension, LT is based on theMetric Temporal Graph Logic (MTGL)
which supports standard logical operators and bindings; we provide proofs on
the soundness of query answers and account for the runtimemonitoring setting
with the introduction of the definite semantics and the effective answer set.
With respect to the Scalability dimension, we present a formal operationaliza-
tion framework which enables the incremental evaluation of a query; moreover,
we present a pruning method which discards deleted entities from the RTMH

without affecting the soundness of answers.
In the following, we first discuss work in Section 6.1 which, although not

concerned with the evaluation of temporal queries, is related to the foundations
of our contributions. We then discuss approaches that support a basic form of

1 As mentioned in Section 2.1.2, we assume a soft real-time system and hence soft timing con-
straints; hard real-time constraints in the evaluation of graph queries [see 32, 34] is outside the
scope of the thesis.

93

94 related work

Ta
bl
e
6.
1:
D
im
en
sio
ns
an
d
fe
at
ur
es
fo
ri
de
nt
ify
in
g
an
d
di
sc
us
sin

g
re
la
te
d
w
or
k.

D
im
en
sio
n

Fe
at
ur
e

D
es
cr
ip
tio
n

M
D
E

Q
ue
ri
es

Sp
ec
ifi
ca
tio
n
an
d
ev
al
ua
tio
n
of
m
od
el
qu
er
ie
s.

St
ru
ct
ur
e

Re
pr
es
en
ta
tio
n
of
a
(s
tr
uc
tu
ra
l)
ar
ch
ite
ct
ur
al
RT

M
.

C
om

pa
tib
ili
ty

C
om

pa
tib
ili
ty
w
ith

m
od
el
-b
as
ed

te
ch
no
lo
gi
es
.

Ti
m
e

H
ist
or
y

En
co
di
ng

of
hi
st
or
y
of
th
e
ex
ec
ut
io
n,
i.e
.,
pa
st
ch
an
ge
sa
nd

th
ei
rt
im
in
g.

Te
m
po
ra
l

Pa
st
an
d
fu
tu
re
te
m
po
ra
lr
eq
ui
re
m
en
ts
.

M
et
ri
c

Ti
m
in
g
co
ns
tr
ai
nt
si
n
te
m
po
ra
lr
eq
ui
re
m
en
ts
.

In
te
rv
al
s

In
te
rv
al
-b
as
ed

se
m
an
tic
sa
nd

(in
te
rv
al
-b
as
ed
)t
im
in
g
in
fo
rm

at
io
n
in
qu
er
y
an
sw
er
s,
e.
g.
,t
he

te
m
po
ra
lv
al
id
ity
.

Fo
rm

al

Ex
pr
es
siv
en
es
s

St
an
da
rd
lo
gi
ca
lo
pe
ra
to
rs
,e
.g
.,
co
nj
un
ct
io
n
an
d
ne
ga
tio
n,
an
d
bi
nd
in
gs
,i
.e
.,
th
e
ca
pa
bi
lit
y
of
ex
pr
es
sin

g
ho
w
a

gi
ve
n
gr
ap
h
th
at
ha
sb
ee
n
pr
ev
io
us
ly
m
at
ch
ed

ev
ol
ve
so
ve
rt
im
e.

So
un
d

Pr
oo
fs
on

th
e
so
un
dn
es
so
fq
ue
ry
an
sw
er
s.

RM
Th
e
co
ns
id
er
at
io
n
of
th
e
ru
nt
im
e
m
on
ito
rin

g
se
tti
ng
,i
.e.
,t
ha
tt
he

hi
st
or
y
en
co
di
ng

m
ay
re
pr
es
en
ta
n
(in
cr
em

en
-

ta
lly

up
da
te
d)
un
fin
ish
ed

hi
st
or
y,
an
d
th
e
pr
ov
isi
on

of
su
ita
bl
e,
i.e
.,
de
fin
ite
,a
ns
w
er
s.

Sc
al
ab
ili
ty

In
cr
em

en
ta
l

A
n
in
cr
em

en
ta
le
va
lu
at
io
n
te
ch
ni
qu
e
w
hi
ch

av
oi
ds
th
e
re
-c
om

pu
ta
tio
n
of
qu
er
y
an
sw
er
sa
fte
re
ac
h
ch
an
ge
.

M
em

or
y

Te
ch
ni
qu
es
to
av
oi
d
pe
rf
or
m
an
ce
de
gr
ad
at
io
n
du
e
to
th
e
ac
cu
m
ul
at
io
n
of
hi
st
or
y.

6.1 foundations 95

historic graph queries via reactive and incremental evaluation in Section 6.2.
Section 6.3 discusses approaches that expressly consider querying the history
of an evolving structure. Section 6.4 discusses work from the RV research
community. Finally, Section 6.5 discusses the approach known as Complex
Event Processing which, although more distantly related to InTempo than RV,
when combined with graph pattern matching is capable of checking whether
the evolution of a structure fulfills basic temporal requirements. Depending on
the extent to which they support the features in Table 6.1, we consider works
as closely or more distantly related to our contributions. Closely related work
and their support for the features in Table 6.1 are discussed in further detail.
An overview of the discussions of closely related work is shown in Table 6.2;
partial support denotes that a feature is supported by the work to a certain
extent, which we clarify further when we discuss the work in question.

6.1 foundations

In the RTMH, time is captured by entity, i.e., vertex, attributes which are as-
sumed to be present for each vertex in the metamodel, i.e., the type graph.
Query evaluations are performed via Graph Transformation (GT) rules [53]
which write or perform computations with these (distinguished) attributes.This
rule behavior is based on foundational approaches where GT rules are extended
with a notion of time, e.g., [74] or our own previous joint work in [143].
The behavior of rules in a TGDN varies according to the number of matches

found by dependencies. In order to support this varying behavior, which is not
covered by conventional GT rules, we employed amalgamated GT rules [26,
69]. This behavior could be supported by rules stemming from other formal
frameworks for GT, such as variability-based rules [151], which however would
require more involved technical notation and explanations for the task at hand.
The language LT relies on MTGL for the specification of temporal require-

ments on the evolution of a structural pattern. MTGL was introduced [68] and
extended [143, 144] in our previous joint work. These works formally underpin
LT as described in Section 2.2.1 and Section 2.3; they present implementations
which focus on demonstrating the feasibility of their formal results and do not
consider performance aspects, e.g., incrementality. In the joint work in [144],
we presented an analysis procedure with preliminary support for runtime mon-
itoring of MTGL: The procedure is based on a translation of an MTGC into
an NGC with appropriate attribute constraints; the translation can be adjusted
so that NGC satisfaction checks over an iteratively updated graph with history
return true either as soon as a falsification is detected or only when it has
become definite. When a falsification is detected, the procedure returns the
time point of the last update. The result abstracts the interval-based semantics
of MTGL into a point-based interpretation which lacks precision. The definite
satisfaction and falsification relations introduced in Section 3.3 support run-
time monitoring of MTGL directly, i.e., at the level of semantics, and enable
the computations of the definite falsification and satisfaction spans. Moreover,
besides the three-valued interpretation of the procedure, the relations enable
an additional three-valued interpretation based on definite satisfactions and
definite falsifications, according to the standard convention [16].

96 related work

Story Diagrams (SDs) [57, 167] are a visual language that combines UML
Activity Diagrams and GT rules to specify pattern matching tasks in an object
diagram as well as the creation and deletion of objects and links [66]. The
prototypical implementation of InTempo presented in Section 5.1 performs
pattern matching tasks based on tool support for SDs [66, 114], developed by
the research group of which the author of this thesis is a member.
An approach presented in previous work of the advisor of the author, builds

on SDs to define Timed Scenario Story Diagrams (TSSDs) [95]. TSSDs sup-
port an if-then-else decomposition of complex structural properties which
integrates timing constraints. Formally, TSSDs constitute formulas whose se-
mantics, presented in [148], are defined over execution traces consisting of
model instances. The semantics do not support queries and, moreover, traces
are required to represent finished executions; consequently, TSSDs can per-
form a definite satisfaction check but support solely postmortem, i.e., offline,
monitoring. TSSDs do not compute a temporal validity, although they do eval-
uate timing constraints by reasoning over intervals. A preliminary monitoring
framework with partial support for TSSDs was presented in [65, 147] but the
implementation is no longer available. The framework lacks any methods for
monitoring a TSSD over an incrementally updated trace or for reducing the
memory consumption, which emphasizes its focus on offline use-cases.

6.2 reactive and incremental evaluation of graph queries

In reactive model transformations, a graph representing a structural model is
constantly updated by a stream of graph elements or events that are mapped to
graph elements; a query is evaluated over the graph after each change and its
answers are updated. This setting resembles streaming [139] and active model
transformations [17]. Query results track matches over multiple instances of the
graph, and could therefore support basic reasoning over the evolution of the
graph. We discuss here solutions which are capable of reactive query evaluation
and support other important features of InTempo, i.e., architectural RTMs,
incremental evaluation, and the runtime monitoring setting.
The Viatra framework [154, 155] stores a graph which typically represents an

architectural RTM in-memory, and features a query evaluation engine which
evaluates a query incrementally by decomposing it into sub-queries. Contrary
to Viatra, InTempo seamlessly integrates a notion of time in the graph repre-
sentation, the query language, and the evaluation framework. Viatra uses a
decomposition strategy similar to the one for obtaining aGDN called RETE [58]
(see Section 2.2.4), whose feasibility for decomposing queries in LT and sub-
sequent performance effect on InTempo we plan to investigate. A Viatra
extension [152] distributes the pattern matching effort for sub-queries over
multiple processing units, which is an interesting future direction for InTempo.
The Viatra-based solution by Búr et al. [33] (see Table 6.2) captures safety

properties via graph queries which search for occurrences of prohibited struc-
tures, i.e., a match constitutes a falsification of the property. Based on the
reactive setting, queries are evaluated after every change to the graph. There-
fore, although indirectly, after every change the approach is capable of checking
structural requirements on the history of the observed execution. An encoding

6.2 reactive and incremental evaluation of graph queries 97

Ta
bl
e
6.
2:
Su
pp
or
tf
or
th
e
fe
at
ur
es
in
Ta
bl
e
6.
1i
n
cl
os
el
y
re
la
te
d
w
or
k

Se
ct
io
n

A
ut
ho
rs

Fe
at
ur
e

M
D
E

Ti
m
e

Fo
rm

al
Sc
al
ab
ili
ty

Queries

Structure

Compatib.

History

Temporal

Metric

Intervals

Express.

Sound

RM

Incremental

Memory

6.
2

Bú
re
ta
l.
[3
3]

6.
3

G
ar
cí
a-
D
om

ín
gu
ez
et
al
.[
61
]

M
az
ak

et
al
.[
11
1]

6.
4

Ba
sin

et
al
.[
13
]

H
av
el
un
d
et
al
.[
84
]

6.
5

D
áv
id
et
al
.[
40
]

O
ur
w
or
k

:n
ot
su
pp
or
te
d,

:p
ar
tia
lly

su
pp
or
te
d,

:s
up
po
rt
ed

98 related work

of the history of the RTM and the integration of temporal statements into prop-
erties are not supported. Moreover, the solution does not support incremental
query evaluation but is capable of distributing the pattern matching effort.
The approach presented by Barquero et al. in [10] analyzes a host graph

stored in an in-memory database and extracts a sub-graph that features only
elements that are relevant to a given query. Each change to the host graph
triggers a new (incremental) analysis and an evaluation of the query over the
sub-graph. Thus, the analysis affords incrementality and a form of pruning.
However, the analysis does not integrate a notion of time—if it were to be
extended to support temporal primitives and an encoding of the graph history,
it could be used in conjunction with the timing-constraint-based pruning of
InTempo to yield a sub-graph that would contain only elements that are both
temporally and structurally relevant. The authors provide no formal proofs on
the soundness of the analysis.

6.3 querying the history of an evolving structure

In the following, we discuss solutions with inherent support for queries on the
history of an evolving structure. Querying the history of elements in a structure
is typically achieved by temporal extensions of the Object Constraint Language
(OCL) [127, 159]. The OCL allows for the specification of structural constraints
on model elements. Temporal extensions enable the specification of temporal
constraints by integrating standard primitives from temporal logic, e.g., always
and eventually [92, 128, 145, 165], and timing constraints [45] in OCL.
The solutions which focus on storing and querying the history of an RTM, i.e.,

Hawk [61], to which InTempo was compared, and the solution by Mazak et al.
[111] (extended from [71]), similarly introduce primitives for their languages
(both based on OCL) which facilitate the expression of temporal constraints
over the entire history on both a model and a model element level. Contrary to
InTempo and the solution by Mazak et al. [111], Hawk requires no metamodel
modifications for storing history. Hawk and the solution by Mazak et al. [111]
store history on a database: Hawk uses the time-aware graph database intro-
duced in [80] and the solution by Mazak et al. [111] uses a time-series-database.
Querying the history at runtime entails the appropriate derivation of database
queries based on the introduced primitives. None of the solutions provides a
formalization of the derivation or the evaluation of temporal constraints over
the history of the RTM.
Hawk uses the Epsilon Object Language (EOL), which is based on OCL.

We have opted for a comparison to Hawk, because of the expressiveness the
primitives introduced into EOL in [61] afford, i.e., they allow for temporal
assertions, e.g., eventually, and version traversal, e.g., earliest, which retrieves
the earliest version in a given collection, and time, which retrieves the time
point of a given version. These primitives can also encode timing constraints.
On the other hand, the OCL-variant by Mazak et al. introduces primitives
which focus on the history of values, i.e., that can retrieve the value of an
attribute at a certain version or between versions, rather than the evolution of
structures. In [61] It is (informally) demonstrated, that the temporal primitives
of EOL can express the well-known specification patterns by Dwyer et al. [49],

6.3 querying the history of an evolving structure 99

which García-Domínguez et al. demonstrate is not possible with the primitives
introduced by Mazak et al. Analogously, without overly intricate encodings, it
would not be possible to translate the EOL queries for the SHS case-study (see
Listing B.6 and Listing B.7) into the OCL-variant introduced by Mazak et al.
We have therefore marked its support for the features Temporal and Metric in
Table 6.2 as partial.
Another argument for the choice of Hawk is that the solution supports

optimizations for the query evaluation. As discussed in Section 5.4, Hawk
maintains an index for the model evolution which may improve querying
performance; moreover, Hawk supports the deletion of elements, i.e., the
removal of an element from the index and the database. The history of deleted
elements is not tracked, which corresponds to a form of pruning. We made use
of this feature in our experimental evaluation, whose results however seem to
indicate that deletion does not work as expected—hence the Memory feature
is marked as partially supported in Table 6.2.
Regarding the database back-end of the two solutions, as the evaluation

in Section 5.4 indicated, database accesses take a significant toll on real-time
querying performance, especially for far-reaching past queries which are likely
to factor in multiple model or element instances in their runtime computations.
Notably, Hawk offers the capability to annotate such queries manually prior to
the execution, such that their matches are pre-computed while the system is
being executed, which, however, is automatically accomplished by the TGDN
in InTempo. Moreover, annotations cannot refer to other annotations, thus
nesting annotated predicates is not supported. Compared to an in-memory
representation, databases have other advantages, e.g., the increased scalability
with respect to the size of the models that can be stored. Notably, the solution
by Mazak et al. offers the option of clustering processing nodes at the database
back-end which increases the scaling potential. Hawk and the solution by
Mazak et al. conveniently support attribute-level history (contrary to InTempo
which requires for attributes to be encoded as entities in the metamodel, see
Section 5.5.2) and on-the-fly operations on attribute values, e.g., aggregation.
However, these features also increase the number of database accesses during
pattern matching.
Similarly to the TSSDs discussed in Section 6.1, the language presented

in [129] builds on SDs to specify a visual, informal notation for the specification
of temporal queries with timing constraints. This notation is not accompanied
by an operationalization framework or tool support.
The history of an RTM may be encoded via model versioning based on a

(general-purpose) model repository, e.g., the solution by Haeusler et al. [76].
There is however a considerable difference between the objectives of InTempo
and those ofmodel repositories. For instance, branching is seamlessly supported
by repositories, whereas, although it can be supported by an RTMH [see 6],
it is beyond the scope of the thesis. On the other hand, for repositories it
is often assumed that queries will mostly concern a single timestamp, i.e., a
specific version; repositories are therefore optimized for such queries and are
less suitable for the on-the-fly evaluation of pattern-based queries that refer to
a period of time—as Haeusler et al. acknowledge.

InTempo can be used in conjunction withmodel-based architectures and sys-
tems which rely on evaluating temporal queries.Themodel-driven architecture

100 related work

for real-time systems presented in [89] is capable of modifying a user-defined
model such that code generated from the model emits events when situations
of interest occur in the execution, e.g., a state change.These events are gathered
into traces, whose compliance to timing constraints specified in the system
model are monitored at runtime by external monitoring tools. Monitoring
results are used to steer the system. InTempo can be used in conjunction with
this architecture to perform the monitoring, analogously to the role of the
approach in a self-adaptive loop in Section 4.4. Given its support for models,
InTempo would allow for defining temporal requirements and interpreting the
results directly on the model level. A system that captures the changes of an
RTM into a graph that can be queried postmortem to support explanation of
behavior is presented in [125]. As the authors suggest, if integrated with this
system, InTempo could enable the provision of explanations at runtime.
Implementations of time-aware graph databases typically build on a database

back-end and introduce extensions which integrate a notion of time, e.g., [41,
110] and the one in [80] used by Hawk. Back-ends with native support for
graphs are capable of generating a push notification when a node or edge that
meets certain conditions has been added or modified [3, 140]. Although this
functionality provides a certain degree of support for reactive settings, none of
the implementations supports incremental evaluation of queries with complex
patterns.
Solutions for temporal graph processing, e.g., [36, 78, 94, 98, 115] may also

be seen as related to InTempo, since they are also concerned with the efficient
storage of a graph that is constantly updated and the reactive evaluation of
historic queries [see 21]. These solutions represent history as a sequence of
change-based snapshots stored either entirely or partly on disk. This allows for
the storage of very large graphs but imposes an overhead on queries and limits
their applicability in online scenarios. Moreover, models are not the primary
focus of these solutions which arguably render their utilization in an MDE
context cumbersome.

6.4 runtime verification

Seen in a broader context, InTempo processes a sequence of events and verifies
whether this sequence satisfies a temporal logic formula. This approach to
runtime monitoring resembles the focus of the research community known
as Runtime Verification (RV). In RV, an online monitoring procedure incre-
mentally processes a sequence of timestamped events and checks whether the
prefix of the observed sequence satisfies a temporal property. The procedure is
required to maintain an (internal) representation of the relevant history of the
execution. Properties may be specified using various formalisms, e.g., temporal
logics and regular expressions [11]. In general, the various RV approaches are
difficult to compare [see 87, 123], as the different application domains of RV
impose specific requirements regarding expressiveness, efficiency, and usability.
In the following, we focus on logic-based approaches.
As indicated by the experimental evaluation, replacing RTM-based solutions

in architectural adaptation schemes by typical RV solutions is impractical. An
RTM is a causally-connected snapshot of the architecture, which therefore

6.4 runtime verification 101

may contain entities which are not relevant to properties; the model has to
be accessible to end-users or other model-based technologies, as it acts as an
interface to monitor and manage the system. Conversely, representations of
the system state in RV are created ad hoc and are typically inaccessible during
monitoring. Moreover, models are exploited via queries which implies query
semantics, i.e., at any point in time, the answer set contains all matches in
the RTM that satisfy the temporal requirements. Monitoring algorithms in
RV perform a satisfaction check for a temporal logic formula which typically
returns an answer from the Boolean domain; moreover, the algorithms are
incremental and discard parts of the state representation which have already
been checked. Despite these fundamental differences, we discuss these solutions
in detail, and opted for a comparison with one, due to the technical similarity
between evaluating temporal requirements on the evolution of a pattern in an
evolving RTM and the objective of RV.
We compared the performance of InTempo to MonPoly by Basin et al. [13,

14], a well-established RV tool which was among top performers in an RV
competition [12]. MonPoly is a command-line tool which notably combines
an adequately expressive specification language for the use-cases discussed
in the thesis with an efficient incremental monitoring algorithm. Its language
is based on theMetric First-Order Temporal Logic (MFOTL) [13] which uses
first-order relations to capture system entities and their relationships. MFOTL
supports past and future temporal operators with timing constraints. Moreover,
the logic supports bindings and a relation-based encoding of graphs. Neverthe-
less, as also discussed in Section 5.5, transferring complex structures to such an
encoding rendered the latter overly technical; emulating pattern matching was
cumbersome even after optimizations; expressing the AC of the query MG2 in
the experimental evaluation, which prohibited the existence of a pattern, was
impossible as MonPoly restricted the use of negation in this case—see Sec-
tion 5.4.3. Hence, we mark the support for structure by MFOTL and MonPoly
in Table 6.2 as partial. The semantics of MFOTL are point-based which means
the logic cannot support the computation of a temporal validity or, as shown
in Section 5.4.1, represent the lifespan of a match straightforwardly. Finally,
point-based semantics and the interval-based semantics of MTGL can lead to
different interpretations for the same properties [see 15] this did not occur in
the experimental evaluation of the thesis but may affect other use-cases.
The tool DejaVu by Havelund et al. [84, 85] can monitor properties specified

in a first-order metric past-only logic with point-based semantics. Translat-
ing MTGCs in the DejaVu specification language would require emulating
graph-based encodings (similar to MonPoly) and, moreover, reformulating
MTGCs such that they feature only past operators. Such reformulations are not
always possible in the presence of graph bindings with the standard temporal
logic operators; even when possible, reformulations could be significantly less
compact [83, 102]. Additionally, Havelund et al. report that, currently, only
timing constraints which span approx. 60 time units or less yield acceptable per-
formance [84]. This restriction renders DejaVu unsuitable for the application
scenarios targeted by InTempo.
Recently, the algorithm in MonPoly has been formally verified via a thorem

prover [141] and extended with recursive rules [166] which increases expressive-
ness. An extension with rules has also been presented for DejaVu [86]. These

102 related work

extensions are a promising future direction for InTempo but beyond the scope
of the present discussion.
Other logic-based approaches typically provide no or only partial support

for key features of InTempo, e.g., events containing data, inherent or indi-
rect support for graphs and bindings, and temporal operators with timing
constraints. Monitoring algorithms for interval-based logics with metric tim-
ing constraints involve interval computations which, although inapplicable
to a graph-based first-order setting, are similar to ours, e.g., [15] which con-
cerns a propositional past-only logic and [107] which entails a three-valued
interpretation for a propositional logic over signals. Havelund et al. present a
runtime monitoring approach for a logic defined over intervals [81], based on
the interval algebra in [1]. Properties in the logic refer to interval relations, e.g.,
requiring that two intervals overlap, where the intervals my contain data. The
logic supports quantification over intervals but does not support quantification
over the data.
Few solutions stemming from RV are based on an MDE context. These

solutions do not support key features of InTempo: The Viatra-based solution
in [33], discussed also in Section 6.2, does not support history or time; the
solution by Dou et al. [46] (supported by the tool in [47] and extended in [48])
presents a pattern-based RV technique which concerns propositional events,
i.e., containing no data, and is thus unable unsuitable for the use-cases of
interest; the solution in [29], which is based on the work by Dou et al., concerns
a considerably different setting where properties refer to the behavior of signals,
e.g., oscillation, and is focused solely on offline use-cases.
Approaches to (logic-based) architectural RV, i.e., the analysis of the behavior

of a system using logic-based RV on the architecture level, typically instrument
the system architecture such that it can emit events and thenmonitor properties
over the sequence of emitted events. The work in [150] presents an offline
approach where propositional events are stored in a database; properties are
specified over these events in an interval logic which is thenmanually translated
into database queries; the query result consists of events which falsify the
property. The work in [42] considers a logic similar to MFOTL, hence the
presented approach has the same shortcomings discussed for MonPoly, e.g.,
lack of inherent support for representation of structure and interval reasoning.
The work in [109] presents an approach based on EMF, which however does
not support timing constraints. Timing constraints are not supported by the
work in [70] either, which however focuses on RV of a temporal logic for SASs
where a special operator, introduced in [164], facilitates the specification of
properties for self-adaptive software; this is also an interesting future direction
for InTempo and MTGL.

6.5 combining structural queries with complex event pro-
cessing

The approach known as Complex Event Processing (CEP) focuses on processing
a stream of events and detects patterns based on the content, the ordering, and
the timing of events. Detected patterns generate complex events which form
another stream and can be further processed [see 39]. Outwardly, the objective

6.5 combining structural queries with cep 103

of RV is similar to that of CEP, the two however have fundamental differences.
Of interest to the present discussion are the following: Languages used in
CEP are not based on temporal logic (in fact, they often lack formally precise
semantics [73]) whichmakes a direct comparison difficult; the capability of CEP
to evaluate sequential patterns is typically limited, while of central importance
to RV [77]—we refer to [77] for a more detailed discussion. Therefore, RV is
considerably more relevant to InTempo.
We discuss here solutions which combine structural queries with CEP,

thereby enabling the evaluation of basic temporal requirements on the evo-
lution of an incrementally updated structure. The solutions by Dávid et al.
[40] and Ehmes et al. [52] incrementally evaluate structural queries after each
change to a model and generate events when matches are found; they then use
CEP to check whether the matches found adhere to a given (event) pattern.
While Ehmes et al. rely on a commercial CEP engine, Dávid et al. introduce a
novel engine whose formalization is presented in [40]—thus considered more
relevant to our work and displayed in Table 6.2. The engine relies on VIATRA
for patternmatching—see Section 6.2.The solution has the advantage that mod-
els need not be modified to enable checking whether temporal requirements
are fulfilled; however, compared to a logic-based approach with support for
bindings, the solution is limited in its ability to express temporal requirements
on sequential patterns.
The work in [121] presents a solution which combines CEP with Hawk,

discussed in Section 6.3. The CEP engine processes events in a log and filters
them according to patterns of interest or a sample rate, thereby reducing the size
of the history indexed by Hawk. Queries over Hawk are then used to derive
explanations on the reasoning of a system that uses Reinforcement Learning.
The solution by [8], later extended in [9] which was discussed in Section 6.3,

stores a stream of data as a graph (on disk), and executes graph queries to
detect event patterns. The solution introduces the notion of a spatial window
to restrict the size of the graph and thus the search space for pattern matching.
However, queries executed in the restricted search space may yield inaccurate
results and is therefore inapplicable for the use-cases of interest.
The solution by Song et al. [146] presents an alternative approach where the

graph is assumed to be already present and events are timestamped edges; the
task of CEP is then mapped to the task of processing the edges and matching
more complex graph patterns. The presented graph pattern matching tech-
nique is enhanced with a timing window which takes the timestamps of edges
into consideration and supports partial orderings. However, the technique is
approximate and does not guarantee the soundness of query answers.

7CONCLUS ION AND FUTURE WORK

7.1 conclusion

In this thesis, we aimed to address the lack of a systematic treatment of evaluat-
ing temporal queries over history-aware architectural runtime models, such
that query answers can be used for architectural monitoring and adaptation at
runtime. Specifically, our objectives were to contribute an appropriate formal-
ization of the problem, thereby increasing the confidence on the soundness of
query answers, and a querying approach with increased scalability with respect
to the state-of-the-art. We considered the following requirements, deemed by
the relevant literature to be key: a compact history encoding which captures
the lifespans of model entities, an adequately expressive query language, the
provision of sound answers, incremental query evaluation, and measures for
reducing the memory consumption in the face of accumulating history. Based
on these requirements, we presented the following contributions.
Regarding the requirement concerning the history encoding, conforming

to the common practice of representing an (architectural) runtime model as a
typed attributed graph, we introduced the runtime model with history (Sec-
tion 3.1), where entities have timestamps marking their creation and deletion
time points; entities in this model are not deleted by default. Thus, the model
encodes previous versions in a single model instance, i.e., in a compact manner.
Regarding the requirement for an adequately expressive query language, we

introduced a language for model queries (Section 3.2) which incorporates an
interval-based temporal logic defined over graphs to enable the formulation
of temporal queries. These queries allow for expressing requirements on the
ordering and timing in which changes in the runtime model with history occur.
Model queries in this language characterize graph transformation rules, which
allows us to employ the well-established theory of (typed attributed) graph
transformation. Query answers pair matches with their temporal validity, i.e.,
the interval for which a match exists and satisfies the temporal requirements.
Regarding the requirement for the provision of sound answers, we provide

proofs on the soundness of an answer to a temporal query as well as the method
of the answer computation. Notably, for queries with future timing constraints,
we present an answer set that accounts for the case where queries are evaluated
over an evolving model, i.e., an unfinished system execution. In an unfinished
execution, the evaluation over a given snapshot is followed by evaluations over
snapshots spawned by future changes; as in our context matches may trigger
adaptations, the query answer has to remain unaffected by future changes. This
answer set is based on a novel three-valued interpretation of the temporal logic
(Section 3.3) used by the language.
Regarding the requirement for incremental evaluation, we present a reac-

tive querying approach, named InTempo, consisting of two core operations:
Operationalization and Evaluation. Operationalization (Section 4.1) is based
on a novel framework for decomposing a query in the introduced language

105

106 conclusion and future work

to a network comprising sub-queries. This network is executed by Evaluation
(Section 4.2) in the right order and is amenable to incremental execution, i.e.,
a sub-query only updates its answers if a change in the runtime model with
history affects it. Evaluation uses a technique that allows for a higher degree of
incrementality, which however may delay the answers for certain queries.
Regarding the requirement for memory-efficiency, we extended InTempo

with an optional operation, called Maintenance (Section 4.3), whereby entities
in themodel that are not relevant to query evaluations are pruned.We show that
pruning does not affect the soundness of answers over a sequence of instances
of the runtime model with history. Maintenance aims at reducing the memory
footprint in executions where storing the entire history is unnecessary.
We presented an integration of the operations of InTempo into the well-

known MAPE-K loop (Section 4.4), thereby obtaining a reference adaptation
engine capable of performing history-aware adaptation.
We presented a prototypical implementation of InTempo in Section 5.1.
Our contributions combined graph transformation, a widespread formal

underpinning for structural models, with a graph-based temporal logic to
enable the specification and evaluation of temporal queries. We equipped each
entity, and therefore each match of a query, with a lifespan, i.e., an interval for
which the match exists. Exploiting the interval-based semantics of the logic,
the evaluation entails interval computations which yield an interval for which
a match in the model satisfies a given temporal formula. We hold that the
combination of formalisms for structure and temporal behavior, extended by
the introduced interval-based reasoning, provides an appropriate formalization
of the problem of evaluating temporal queries over history-aware architectural
runtime models.
We developed two variants of the implementation: one where Maintenance

was enabled, i.e., the pruning variant, and one where it was disabled, i.e., the
non-pruning variant. The non-pruning variant operates on a complete history
encoding and thus its answers concern the entire observed history, although at
the expense of query evaluation times. We evaluated the two variants based
on two case-studies: a simulation of an adaptation scenario for an envisioned
smart hospital system according to a real medical guideline and both real and
synthetic data, and a simulation of the operation of a social network based
on data generated by an independent benchmark. We compared the query
evaluation times and memory consumption of the variants to two state-of-the-
art tools from model-driven engineering and runtime verification with the
capability of evaluating temporal queries over the history of an architectural
model. The pruning variant yielded the fastest query evaluation times; the non-
pruning variant was faster than the state-of-the-art solution frommodel-driven
engineering which can similarly return answers over the entire history. Regard-
ing the memory consumption, the pruning variant performed better than the
state-of-the-art in larger logs; again, the non-pruning variant performed better
than the model-based solution. We thus hold that the objective for increased
scalability was also fulfilled in the presented experimental settings.
In conclusion, architectural runtime models constitute a powerful means

for monitoring and adapting large systems with dynamic architecture dur-
ing their lifetime. Representing and querying the evolution of the model, i.e.,
its history, enable more informed decision-making as well as the application

7.2 future work 107

of runtime models in domains where the consideration of temporal data is
mandatory. However, prior solutions for the evaluation of temporal queries
over history-aware architectural models lack the formal precision required for
monitoring and the technical characteristics required for scalable performance,
e.g., incremental evaluation. On the other hand, solutions from the research
community of runtime verification offer formal precision but present other
disadvantages, the most important of which is arguably the inability to repre-
sent complex structure inherently. We presented a novel formalization which
integrates a well-established formal foundation for representing structure with
a temporal logic, thereby enabling formal precision in the evaluation of tem-
poral queries. The formalization severs as the basis of a querying approach
which was conceived with scalability in mind; it supports incremental query
evaluation and an optional deletion of historical data which are irrelevant to
query evaluations.We presented a prototypical implementation of the approach
which was compared to the state-of-the-art from model-driven engineering
and runtime verification and yielded promising results in the presented exper-
imental settings. These results indicate that our approach paves the way for
sophisticated history-aware self-adaptation solutions and constitutes a highly
effective technique for runtime monitoring on an architectural level.

7.2 future work

In this section, we discuss short- and long-term future work. We first discuss
work related to performance and technical optimizations which may increase
scalability further, thereby enabling the application of our contributions to
various settings, e.g., systems with limited resources. Then, we discuss how
our contributions can be used as the basis for sophisticated history-aware
adaptation schemes. Finally, we discuss extensions which may enable history-
aware architectural runtime models and the evaluation of temporal queries in
larger settings, i.e., systems of systems.

7.2.1 Technical Optimizations and Performance

As discussed before, our decomposition strategy is based on generalized dis-
crimination networks, which is a more general variant of the RETE algorithm.
The algorithm is already used for graph pattern matching in state-of-the-art
model-driven engineering technologies. The two strategies have different char-
acteristics which may have an impact on their performance. In the future, we
plan to investigate the applicability of RETE networks for temporal queries and
profile their performance.
The experimental evaluation provided a preliminary indication on the num-

ber of events per second that the querying approach can handle. We plan
to stress-test InTempo in other experimental evaluation settings, which will
indicate whether the approach can be used for application scenarios with con-
siderably larger event streams.
One of our short-term plans is to employ indexing structures that can index

intermediate matches based on their intervals. Such an indexing structure is
expected to improve the performance of sub-queries and thus of the network. A

108 conclusion and future work

related plan entails the investigation on whether the storage of context patterns
in the network, which is now redundant, can be optimized.
Finally, we plan to experiment with more precise pruning strategies for appli-

cation scenarios with limited resources. As presented here, pruning is based on
a time window which includes those deleted entities in a history-aware model
that are temporally relevant to query evaluations and is derived based on the
timing constraints of the temporal operators in a given formula. This pruning
strategy can be extended with an analysis that would examine other criteria,
e.g., whether both operands in a conjunction can still be satisfied, that would
allow for optimized pruning which in certain cases can be performed with-
out considering the time window. If the overhead of this analysis is increased,
another method for the application of pruning, e.g., periodic instead of after
every query evaluation, may be considered.

7.2.2 Sophisticated History-aware Self-Adaptation

We introduced a reference architecture for an adaptation engine which inte-
grates InTempo with the MAPE-K loop and is thus capable of history-aware
adaptation.The engine focused on the Analyze activity where adaptation issues
are detected based on the knowledge base, i.e., temporal queries are evaluated
over the runtime model with history, and details of other activities were ab-
stracted. The performed adaptations were based on straightforward adaptation
rules. In more sophisticated adaptation scenarios, the Analyze activity may
have to consider more rules and thus perform multiple queries; based on the
issues found, the Plan activity may have to perform its own analysis to compute
the impact of the application of each rule, devise an adaptation plan, and ensure
that the plan addresses adaptation issues in an optimal manner.
The duration of these tasks may be non-negligible. We plan to apply the en-

gine in such sophisticated adaptation scenarios and investigate its performance.
Moreover, engine variants can be developed based on features of InTempo:
one variant may use non-definite answers for the early detection of possible
issues, whereas another may be interested only in definite albeit slower answers;
provided that timing constraints in the input queries allow it, another variant
may temporarily enable the pruning option, if it observes that query evaluation
speed does not satisfy the requirements of the adaptation.
An unexploited feature of the temporal validity returned by the querying

approach is that, for certain properties, the query result can be combined with
the non-definiteness window to compute the time remaining for the falsification
of a temporal requirement.This knowledgemay enablemore informed decision-
making during the Plan activity.
On a foundational level, a direction which holds vast potential is the opportu-

nity to observe and learn from the history of the architecture and the performed
adaptations. We plan to leverage the direct access to the history recorded in
the model and the efficient querying approach to enable an adaptation engine
with the capability for predictions.

7.2 future work 109

7.2.3 History-awareness and Temporal Queries for Systems of Systems

Increasingly, systems operate in settings where they have to collaborate with
other systems, thus forming systems of systems. From a model-driven engi-
neering perspective, this collaboration can be realized by multiple runtime
models in so-called megamodels. A significantly promising direction is work
on the foundations and technology that will allow for history-awareness in
megamodels, for example by handling synchronization and combination of
multiple history-aware runtime models.
In this setting, the answers from local evaluations of temporal queries will

have to be combined. This requirement poses significant yet fascinating chal-
lenges. Two areas of particular interest for our future work are methods for
distributed evaluation for temporal queries and the handling of synchronization
issues, e.g., network failures or out-of-order events, in query evaluations.

B I BL IOGRAPHY

[1] James F. Allen. “Maintaining Knowledge About Temporal Intervals.”
In: Communications of the ACM 26.11 (Nov. 1983), pp. 832–843. issn:
0001-0782, 1557-7317. doi: 10.1145/182.358434.

[2] Bowen Alpern and Fred B. Schneider. “Recognizing Safety and Live-
ness.” In: Distributed Computing 2.3 (Sept. 1987), pp. 117–126. issn: 0178-
2770, 1432-0452. doi: 10.1007/BF01782772.

[3] Apache Foundation. EventStrategy - Apache TinkerPop Reference Doc-
umentation. url: https://tinkerpop.apache.org/docs/3.5.1/
reference/#_eventstrategy (visited on 07/25/2023).

[4] Kyungmin Bae and Jia Lee. “Bounded Model Checking of Signal Tem-
poral Logic Properties Using Syntactic Separation.” In: Proceedings of
the ACM on Programming Languages 3 (POPL Jan. 2, 2019), 51:1–51:30.
doi: 10.1145/3290364.

[5] Matthias Barkowsky andHolger Giese. “Hybrid Search PlanGeneration
for Generalized Graph Pattern Matching.” In: Journal of Logical and
Algebraic Methods in Programming 114 (Aug. 1, 2020), p. 100563. issn:
2352-2208. doi: 10.1016/j.jlamp.2020.100563.

[6] Matthias Barkowsky and Holger Giese. “Towards Development
with Multi-version Models: Detecting Merge Conflicts and Checking
Well-Formedness.” In: Graph Transformation. Ed. by Nicolas Behr and
Daniel Strüber. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2022, pp. 118–136. isbn: 978-3-031-09843-7.
doi: 10.1007/978-3-031-09843-7_7.

[7] Konstantinos Barmpis, Seyyed Shah, and Dimitrios S. Kolovos. “To-
wards Incremental Updates in Large-Scale Model Indexes.” In:Mod-
elling Foundations and Applications. Ed. by Gabriele Taentzer and Fran-
cis Bordeleau. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2015, pp. 137–153. isbn: 978-3-319-21151-0. doi:
10.1007/978-3-319-21151-0_10.

[8] Gala Barquero, Loli Burgueño, Javier Troya, and Antonio Vallecillo. “Ex-
tending Complex Event Processing to Graph-structured Information.”
In: Proceedings of the 21th ACM/IEEE International Conference onModel
Driven Engineering Languages and Systems. MODELS ’18. New York,
NY, USA: Association for ComputingMachinery, Oct. 14, 2018, pp. 166–
175. isbn: 978-1-4503-4949-9. doi: 10.1145/3239372.3239402.

[9] Gala Barquero, Javier Troya, and Antonio Vallecillo. “Trading Accuracy
for Performance in Data Processing Applications.” In:The Journal of
Object Technology 18.2 (2019), 9:1. issn: 1660-1769. doi: 10.5381/jot.
2019.18.2.a9.

111

https://doi.org/10.1145/182.358434
https://doi.org/10.1007/BF01782772
https://tinkerpop.apache.org/docs/3.5.1/reference/#_eventstrategy
https://tinkerpop.apache.org/docs/3.5.1/reference/#_eventstrategy
https://doi.org/10.1145/3290364
https://doi.org/10.1016/j.jlamp.2020.100563
https://doi.org/10.1007/978-3-031-09843-7_7
https://doi.org/10.1007/978-3-319-21151-0_10
https://doi.org/10.1145/3239372.3239402
https://doi.org/10.5381/jot.2019.18.2.a9
https://doi.org/10.5381/jot.2019.18.2.a9

112 bibliography

[10] Gala Barquero, Javier Troya, and Antonio Vallecillo. “Improving Query
Performance on Dynamic Graphs.” In: Software and Systems Model-
ing 20.4 (Aug. 1, 2021), pp. 1011–1041. issn: 1619-1374. doi: 10.1007/
s10270-020-00832-3.

[11] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. “In-
troduction to Runtime Verification.” In: Lectures on Runtime Verifi-
cation: Introductory and Advanced Topics. Ed. by Ezio Bartocci and
Yliès Falcone. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 1–33. isbn: 978-3-319-75632-5. doi:
10.1007/978-3-319-75632-5_1.

[12] Ezio Bartocci et al. “First International Competition on Runtime Ver-
ification: Rules, Benchmarks, Tools, and Final Results of CRV 2014.”
In: International Journal on Software Tools for Technology Transfer 21.1
(Feb. 1, 2019), pp. 31–70. issn: 1433-2787. doi: 10.1007/s10009-017-
0454-5.

[13] David Basin, Felix Klaedtke, Samuel Müller, and Eugen Zălinescu.
“Monitoring Metric First-Order Temporal Properties.” In: Journal of
the ACM 62.2 (May 6, 2015), 15:1–15:45. issn: 0004-5411. doi: 10.1145/
2699444.

[14] David Basin, Felix Klaedtke, and Eugen Zălinescu. “TheMonPoly Mon-
itoring Tool.” In: Kalpa Publications in Computing. RV-CuBES 2017.
An International Workshop on Competitions, Usability, Benchmarks,
Evaluation, and Standardisation for Runtime Verification Tools. Vol. 3.
EasyChair, Dec. 14, 2017, pp. 19–28. doi: 10.29007/89hs.

[15] David Basin, Felix Klaedtke, and Eugen Zălinescu. “Algorithms for
Monitoring Real-Time Properties.” In: Acta Informatica 55.4 (June 1,
2018), pp. 309–338. issn: 1432-0525. doi: 10.1007/s00236-017-0295-
4.

[16] Andreas Bauer, Martin Leucker, and Christian Schallhart. “The Good,
the Bad, and the Ugly, But How Ugly Is Ugly?” In: Runtime Verification.
Ed. by Oleg Sokolsky and Serdar Taşıran. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2007, pp. 126–138. isbn: 978-3-
540-77395-5. doi: 10.1007/978-3-540-77395-5_11.

[17] Olivier Beaudoux, Arnaud Blouin, Olivier Barais, and Jean-Marc
Jézéquel. “Active Operations on Collections.” In: Model Driven En-
gineering Languages and Systems. Ed. by Dorina C. Petriu, Nicolas
Rouquette, and Øystein Haugen. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2010, pp. 91–105. isbn: 978-3-642-16145-2.
doi: 10.1007/978-3-642-16145-2_7.

[18] Nelly Bencomo, Sebastian Götz, and Hui Song. “Models@run.Time:
A Guided Tour of the State of the Art and Research Challenges.” In:
Software & Systems Modeling 18.5 (Oct. 1, 2019), pp. 3049–3082. issn:
1619-1374. doi: 10.1007/s10270-018-00712-x.

https://doi.org/10.1007/s10270-020-00832-3
https://doi.org/10.1007/s10270-020-00832-3
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/s10009-017-0454-5
https://doi.org/10.1007/s10009-017-0454-5
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89hs
https://doi.org/10.1007/s00236-017-0295-4
https://doi.org/10.1007/s00236-017-0295-4
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-642-16145-2_7
https://doi.org/10.1007/s10270-018-00712-x

bibliography 113

[19] Nelly Bencomo, Kris Welsh, Pete Sawyer, and Jon Whittle. “Self-
Explanation in Adaptive Systems.” In: Proceedings of the 2012 IEEE
17th International Conference on Engineering of Complex Computer Sys-
tems. ICECCS ’12. USA: IEEE Computer Society, July 18, 2012, pp. 157–
166. isbn: 978-2-9541810-0-4.

[20] Amine Benelallam, Thomas Hartmann, Ludovic Mouline, Francois
Fouquet, Johann Bourcier, Olivier Barais, and Yves Le Traon. “Raising
Time Awareness in Model-Driven Engineering: Vision Paper.” In: 2017
ACM/IEEE 20th International Conference on Model Driven Engineering
Languages and Systems (MODELS). Sept. 2017, pp. 181–188. doi: 10.
1109/MODELS.2017.11.

[21] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and
Torsten Hoefler. “Practice of Streaming Processing of Dynamic Graphs:
Concepts, Models, and Systems.” In: IEEE Transactions on Parallel and
Distributed Systems (2021), pp. 1–1. issn: 1045-9219, 1558-2183, 2161-9883.
doi: 10.1109/TPDS.2021.3131677.

[22] Lorenzo Bettini. Implementing Domain Specific Languages with Xtext
and Xtend - Second Edition. 2nd ed. Packt Publishing, 2016. 426 pp.
isbn: 978-1-78646-496-5.

[23] Thomas Beyhl, Dominique Blouin, Holger Giese, and Leen Lambers.
“On theOperationalization of GraphQueries withGeneralizedDiscrim-
ination Networks.” In: Graph Transformation. Ed. by Rachid Echahed
and Mark Minas. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 170–186. isbn: 978-3-319-40530-8.
doi: 10.1007/978-3-319-40530-8_11.

[24] Jean Bézivin, Richard F. Paige, Uwe Aßmann, Bernhard Rumpe, and
Douglas C. Schmidt. “08331 Manifesto – Model Engineering for Com-
plex Systems.” In: Perspectives Workshop: Model Engineering of Complex
Systems (MECS). Ed. by Uwe Aßmann, Jean Bézivin, Richard Paige,
Bernhard Rumpe, and Douglas C. Schmidt. Dagstuhl Seminar Proceed-
ings 08331. Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, 2008. url: http://drops.dagstuhl.de/
opus/volltexte/2008/1603.

[25] Enrico Biermann, Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and
Gabriele Taentzer. “Parallel Independence of Amalgamated Graph
Transformations Applied to Model Transformation.” In: Graph Trans-
formations and Model-Driven Engineering: Essays Dedicated to Manfred
Nagl on the Occasion of His 65th Birthday. Ed. by Gregor Engels, Claus
Lewerentz, Wilhelm Schäfer, Andy Schürr, and Bernhard Westfechtel.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2010,
pp. 121–140. isbn: 978-3-642-17322-6. doi: 10.1007/978-3-642-
17322-6_7.

[26] Enrico Biermann, Claudia Ermel, andGabriele Taentzer. “Formal Foun-
dation of Consistent EMF Model Transformations by Algebraic Graph
Transformation.” In: Software & Systems Modeling 11.2 (May 1, 2012),
pp. 227–250. issn: 1619-1374. doi: 10.1007/s10270-011-0199-7.

https://doi.org/10.1109/MODELS.2017.11
https://doi.org/10.1109/MODELS.2017.11
https://doi.org/10.1109/TPDS.2021.3131677
https://doi.org/10.1007/978-3-319-40530-8_11
http://drops.dagstuhl.de/opus/volltexte/2008/1603
http://drops.dagstuhl.de/opus/volltexte/2008/1603
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/s10270-011-0199-7

114 bibliography

[27] Robert Bill, Alexandra Mazak, Manuel Wimmer, and Birgit Vogel-
Heuser. “On the Need for Temporal Model Repositories.” In: Software
Technologies: Applications and Foundations. Ed. by Martina Seidl and
Steffen Zschaler. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 136–145. isbn: 978-3-319-74730-9.
doi: 10.1007/978-3-319-74730-9_11.

[28] Gordon Blair, Nelly Bencomo, and Robert B. France. “Models@
Run.Time.” In: Computer 42.10 (Oct. 2009), pp. 22–27. issn: 1558-0814.
doi: 10.1109/MC.2009.326.

[29] Chaima Boufaied, ClaudioMenghi, Domenico Bianculli, Lionel Briand,
and Yago Isasi Parache. “Trace-Checking Signal-Based Temporal
Properties: A Model-Driven Approach.” In: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing. Virtual Event (Australia): ACM, Dec. 21, 2020, pp. 1004–1015. isbn:
978-1-4503-6768-4. doi: 10.1145/3324884.3416631.

[30] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. “Model-Driven
Software Engineering in Practice, Second Edition.” In: Synthesis Lectures
on Software Engineering 3.1 (Mar. 30, 2017), pp. 1–207. issn: 2328-3319.
doi: 10.2200/S00751ED2V01Y201701SWE004.

[31] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, andAlfonso Pieran-
tonio. “GrandChallenges inModel-Driven Engineering: AnAnalysis of
the State of the Research.” In: Software and Systems Modeling 19.1 (Jan. 1,
2020), pp. 5–13. issn: 1619-1374. doi: 10.1007/s10270-019-00773-6.

[32] Márton Búr, KristófMarussy, Brett H.Meyer, andDániel Varró. “Worst-
Case Execution Time Calculation for Query-based Monitors by Wit-
ness Generation.” In: ACM Transactions on Embedded Computing Sys-
tems 20.6 (Oct. 18, 2021), 107:1–107:36. issn: 1539-9087. doi: 10.1145/
3471904.

[33] Márton Búr, Gábor Szilágyi, András Vörös, and Dániel Varró. “Dis-
tributed Graph Queries Over Models@run.Time for Runtime Monitor-
ing of Cyber-Physical Systems.” In: International Journal on Software
Tools for Technology Transfer 22.1 (Feb. 1, 2020), pp. 79–102. issn: 1433-
2787. doi: 10.1007/s10009-019-00531-5.

[34] Sven Burmester, Holger Giese, Andreas Seibel, and Matthias Tichy.
“Worst-Case Execution Time Optimization of Story Patterns for Hard
Real-Time Systems.” In: Proc. of the 3rd International Fujaba Days. 2005,
pp. 71–78.

[35] Jordi Cabot, Antoni Olivé, and Ernest Teniente. “Representing Tem-
poral Information in UML.” In: «UML» 2003 - The Unified Modeling
Language. Modeling Languages and Applications. Ed. by Perdita Stevens,
Jon Whittle, and Grady Booch. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2003, pp. 44–59. isbn: 978-3-540-45221-8.
doi: 10.1007/978-3-540-45221-8_5.

https://doi.org/10.1007/978-3-319-74730-9_11
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1145/3324884.3416631
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1145/3471904
https://doi.org/10.1145/3471904
https://doi.org/10.1007/s10009-019-00531-5
https://doi.org/10.1007/978-3-540-45221-8_5

bibliography 115

[36] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,
Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. “Ki-
neograph: Taking the Pulse of a Fast-Changing and Connected World.”
In: Proceedings of the 7th ACM European Conference on Computer
Systems. EuroSys ’12. New York, NY, USA: Association for Comput-
ing Machinery, Apr. 10, 2012, pp. 85–98. isbn: 978-1-4503-1223-3. doi:
10.1145/2168836.2168846.

[37] Carlo Combi, Mauro Gambini, Sara Migliorini, and Roberto Posenato.
“Modelling Temporal, Data-Centric Medical Processes.” In: Proceedings
of the 2nd ACM SIGHIT International Health Informatics Symposium.
IHI ’12. New York, NY, USA: Association for Computing Machinery,
Jan. 28, 2012, pp. 141–150. isbn: 978-1-4503-0781-9. doi: 10.1145/
2110363.2110382.

[38] Bruno Courcelle. “The Expression of Graph Properties and Graph
Transformations in Monadic Second-Order Logic.” In: Handbook of
Graph Grammars and Computing by Graph Transformation: Volume I.
Foundations. USA: World Scientific Publishing Co., Inc., Feb. 1, 1997,
pp. 313–400. isbn: 978-981-02-2884-2.

[39] Gianpaolo Cugola and Alessandro Margara. “Processing Flows of In-
formation: From Data Stream to Complex Event Processing.” In: ACM
Computing Surveys 44.3 (June 14, 2012), 15:1–15:62. issn: 0360-0300. doi:
10.1145/2187671.2187677.

[40] István Dávid, István Ráth, and Dániel Varró. “Foundations for Stream-
ingModel Transformations by Complex Event Processing.” In: Software
& Systems Modeling 17.1 (Feb. 2018), pp. 135–162. issn: 1619-1366, 1619-
1374. doi: 10.1007/s10270-016-0533-1.

[41] Ariel Debrouvier, Eliseo Parodi, Matías Perazzo, Valeria Soliani, and
Alejandro Vaisman. “A Model and Query Language for Temporal
GraphDatabases.” In:TheVLDB Journal 30.5 (Sept. 1, 2021), pp. 825–858.
issn: 0949-877X. doi: 10.1007/s00778-021-00675-4.

[42] Normann Decker, Franziska Kühn, and Daniel Thoma. “Runtime Veri-
fication of Web Services for Interconnected Medical Devices.” In: 2014
IEEE 25th International Symposium on Software Reliability Engineer-
ing. 2014 IEEE 25th International Symposium on Software Reliability
Engineering. Nov. 2014, pp. 235–244. doi: 10.1109/ISSRE.2014.16.

[43] Rogério de Lemos et al. “Software Engineering for Self-Adaptive Sys-
tems: A Second Research Roadmap.” In: Software Engineering for Self-
Adaptive Systems II: International Seminar, Dagstuhl Castle, Germany,
October 24-29, 2010 Revised Selected and Invited Papers. Ed. by Rogério
de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 1–32.
isbn: 978-3-642-35813-5. doi: 10.1007/978-3-642-35813-5_1.

[44] Thomas J. DiCiccio and Bradley Efron. “Bootstrap Confidence Inter-
vals.” In: Statistical Science 11.3 (Sept. 1996), pp. 189–228. issn: 0883-4237,
2168-8745. doi: 10.1214/ss/1032280214.

https://doi.org/10.1145/2168836.2168846
https://doi.org/10.1145/2110363.2110382
https://doi.org/10.1145/2110363.2110382
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1007/s10270-016-0533-1
https://doi.org/10.1007/s00778-021-00675-4
https://doi.org/10.1109/ISSRE.2014.16
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1214/ss/1032280214

116 bibliography

[45] Wei Dou, Domenico Bianculli, and Lionel Briand. “OCLR: A More
Expressive, Pattern-Based Temporal Extension of OCL.” In:Modelling
Foundations and Applications. Ed. by Jordi Cabot and Julia Rubin. Lec-
ture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2014, pp. 51–66. isbn: 978-3-319-09195-2. doi: 10.1007/978-
3-319-09195-2_4.

[46] Wei Dou, Domenico Bianculli, and Lionel Briand. “A Model-Driven
Approach to Trace Checking of Pattern-Based Temporal Properties.” In:
Proceedings of the ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems. MODELS ’17. Austin, Texas:
IEEE Press, Sept. 17, 2017, pp. 323–333. isbn: 978-1-5386-3492-9. doi:
10.1109/MODELS.2017.9.

[47] Wei Dou, Domenico Bianculli, and Lionel Briand. “TemPsy-Check:
A Tool for Model-driven Trace Checking of Pattern-based Tempo-
ral Properties.” In: Kalpa Publications in Computing. RV-CuBES 2017.
An International Workshop on Competitions, Usability, Benchmarks,
Evaluation, and Standardisation for Runtime Verification Tools. Vol. 3.
EasyChair, Dec. 14, 2017, pp. 64–70. doi: 10.29007/w2nj.

[48] WeiDou,Domenico Bianculli, and Lionel Briand. “Model-DrivenTrace
Diagnostics for Pattern-based Temporal Specifications.” In: Proceedings
of the 21th ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems. MODELS ’18. New York, NY, USA:
Association for ComputingMachinery, Oct. 14, 2018, pp. 278–288. isbn:
978-1-4503-4949-9. doi: 10.1145/3239372.3239396.

[49] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. “Patterns in Property Spec-
ifications for Finite-State Verification.” In: Proceedings of the 1999 Inter-
national Conference on Software Engineering (IEEE Cat. No.99CB37002).
May 1999, pp. 411–420. doi: 10.1145/302405.302672.

[50] Eclipse Foundation. Eclipse Hawk. 2019. url: https://www.eclipse.
org/hawk/ (visited on 07/25/2023).

[51] Eclipse Foundation. Eclipse Modeling Framework (EMF). url: https:
//www.eclipse.org/modeling/emf/ (visited on 07/25/2023).

[52] Sebastian Ehmes, Lars Fritsche, andKonradAltenhofen. “GrapeL: Com-
bining Graph Pattern Matching and Complex Event Processing.” In:
Systems Modelling and Management. Ed. by Önder Babur, Joachim
Denil, and Birgit Vogel-Heuser. Communications in Computer and
Information Science. Cham: Springer International Publishing, 2020,
pp. 180–196. isbn: 978-3-030-58167-1. doi: 10.1007/978-3-030-
58167-1_13.

[53] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. “Fundamental
Theory for Typed Attributed Graph Transformation.” In: Graph Trans-
formations. Ed. by Hartmut Ehrig, Gregor Engels, Francesco Parisi-
Presicce, and Grzegorz Rozenberg. Lecture Notes in Computer Science.
Berlin,Heidelberg: Springer, 2004, pp. 161–177. isbn: 978-3-540-30203-2.
doi: 10.1007/978-3-540-30203-2_13.

https://doi.org/10.1007/978-3-319-09195-2_4
https://doi.org/10.1007/978-3-319-09195-2_4
https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.29007/w2nj
https://doi.org/10.1145/3239372.3239396
https://doi.org/10.1145/302405.302672
https://www.eclipse.org/hawk/
https://www.eclipse.org/hawk/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://doi.org/10.1007/978-3-030-58167-1_13
https://doi.org/10.1007/978-3-030-58167-1_13
https://doi.org/10.1007/978-3-540-30203-2_13

bibliography 117

[54] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony
McIsaac, and David Van Campenhout. “Reasoning with Temporal
Logic on Truncated Paths.” In: Computer Aided Verification. Ed. by
Warren A. Hunt and Fabio Somenzi. Berlin, Heidelberg: Springer, 2003,
pp. 27–39. isbn: 978-3-540-45069-6. doi: 10.1007/978- 3- 540-
45069-6_3.

[55] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey
Gubichev, Arnau Prat, Minh-Duc Pham, and Peter Boncz. “The LDBC
Social Network Benchmark: Interactive Workload.” In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’15. New York, NY, USA: Association for Computing
Machinery, May 27, 2015, pp. 619–630. isbn: 978-1-4503-2758-9. doi:
10.1145/2723372.2742786.

[56] Naeem Esfahani, Eric Yuan, Kyle R. Canavera, and SamMalek. “Infer-
ring Software Component Interaction Dependencies for Adaptation
Support.” In: ACM Transactions on Autonomous and Adaptive Systems
10.4 (Feb. 3, 2016), 26:1–26:32. issn: 1556-4665. doi: 10.1145/2856035.

[57] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. “Story
Diagrams: A New Graph Rewrite Language Based on the Unified Mod-
eling Language and Java.” In:Theory and Application of Graph Transfor-
mations, 6th International Workshop, TAGT’98, Paderborn, Germany,
November 16-20, 1998, Selected Papers. Ed. by Hartmut Ehrig, Gregor
Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg. Vol. 1764. Lec-
ture Notes in Computer Science. Springer, 1998, pp. 296–309. doi:
10.1007/978-3-540-46464-8_21.

[58] Charles L. Forgy. “Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem.” In: Artificial Intelligence 19.1 (Sept.
1982), pp. 17–37. issn: 00043702. doi: 10.1016/0004- 3702(82)
90020-0.

[59] Robert France and Bernhard Rumpe. “Model-Driven Development
of Complex Software: A Research Roadmap.” In: Future of Software
Engineering (FOSE ’07). May 2007, pp. 37–54. doi: 10.1109/FOSE.
2007.14.

[60] Antonio García-Domínguez, Nelly Bencomo, Juan Marcelo Parra Ul-
lauri, and Luis Hernan Garcia Paucar. “Towards History-Aware Self-
Adaptation with Explanation Capabilities.” In: 2019 IEEE 4th Inter-
national Workshops on Foundations and Applications of Self* Systems
(FAS*W). Umea, Sweden: IEEE, June 2019, pp. 18–23. isbn: 978-1-72812-
406-3. doi: 10.1109/FAS-W.2019.00018.

[61] Antonio García-Domínguez, Nelly Bencomo, Juan Marcelo Parra-
Ullauri, and Luis Hernán García-Paucar. “Querying and Annotating
Model Histories with Time-Aware Patterns.” In: 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and
Systems (MODELS). Sept. 2019, pp. 194–204. doi: 10.1109/MODELS.
2019.000-2.

https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/2856035
https://doi.org/10.1007/978-3-540-46464-8_21
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FAS-W.2019.00018
https://doi.org/10.1109/MODELS.2019.000-2
https://doi.org/10.1109/MODELS.2019.000-2

118 bibliography

[62] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. “Software
Architecture-Based Self-Adaptation.” In: Autonomic Computing and
Networking. Ed. by Yan Zhang, Laurence Tianruo Yang, and Mieso K.
Denko. Boston, MA: Springer US, 2009, pp. 31–55. isbn: 978-0-387-
89827-8. doi: 10.1007/978-0-387-89828-5_2.

[63] Sona Ghahremani, Holger Giese, andThomas Vogel. “Improving Scala-
bility and Reward of Utility-Driven Self-Healing for Large Dynamic
Architectures.” In: ACM Transactions on Autonomous and Adaptive
Systems 14.3 (Feb. 25, 2020), 12:1–12:41. issn: 1556-4665. doi: 10.1145/
3380965.

[64] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J. Ramirez,
Paola Inverardi, Sebastian Wätzoldt, and Siobhán Clarke. “Living with
Uncertainty in theAge of RuntimeModels.” In:Models@run.Time: Foun-
dations, Applications, and Roadmaps. Ed. by Nelly Bencomo, Robert
France, Betty H. C. Cheng, and Uwe Aßmann. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2014, pp. 47–
100. isbn: 978-3-319-08915-7. doi: 10.1007/978-3-319-08915-7_3.

[65] Holger Giese, Stefan Henkler, Martin Hirsch, Florian Klein, and
Michael Spijkerman. “Monitoring of Structural and Temporal Proper-
ties.” In: Proc. of the 5th International FujabaDays 2007, Kassel, Germany.
Ed. by Leif Geiger, Holger Giese, and Albert Zündorf. Sept. 2007, pp. 8–
11.

[66] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. “Improved
Flexibility and Scalability by Interpreting StoryDiagrams.” In: Electronic
Communications of the EASST 18.0 (Sept. 8, 2009). issn: 1863-2122. doi:
10.14279/tuj.eceasst.18.268.

[67] Holger Giese, Leen Lambers, Basil Becker, Stephan Hildebrandt, Stefan
Neumann, Thomas Vogel, and Sebastian Wätzoldt. “Graph Transfor-
mations for MDE, Adaptation, and Models at Runtime.” In: Formal
Methods for Model-Driven Engineering: 12th International School on For-
mal Methods for the Design of Computer, Communication, and Software
Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced Lectures.
Ed. by Marco Bernardo, Vittorio Cortellessa, and Alfonso Pierantonio.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012,
pp. 137–191. isbn: 978-3-642-30982-3. doi: 10.1007/978- 3- 642-
30982-3_5.

[68] Holger Giese, Maria Maximova, Lucas Sakizloglou, and Sven Schneider.
“Metric Temporal Graph Logic over Typed Attributed Graphs.” In: Fun-
damental Approaches to Software Engineering. Ed. by Reiner Hähnle and
Wil van der Aalst. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2019, pp. 282–298. isbn: 978-3-030-16722-6.
doi: 10.1007/978-3-030-16722-6_16.

[69] Ulrike Golas, Annegret Habel, and Hartmut Ehrig. “Multi-
Amalgamation of Rules with Application Conditions in -Adhesive
Categories.” In: Mathematical Structures in Computer Science
24.4 (Aug. 2014). issn: 0960-1295, 1469-8072. doi: 10 . 1017 /

S0960129512000345.

https://doi.org/10.1007/978-0-387-89828-5_2
https://doi.org/10.1145/3380965
https://doi.org/10.1145/3380965
https://doi.org/10.1007/978-3-319-08915-7_3
https://doi.org/10.14279/tuj.eceasst.18.268
https://doi.org/10.1007/978-3-642-30982-3_5
https://doi.org/10.1007/978-3-642-30982-3_5
https://doi.org/10.1007/978-3-030-16722-6_16
https://doi.org/10.1017/S0960129512000345
https://doi.org/10.1017/S0960129512000345

bibliography 119

[70] Heather J. Goldsby, Betty H. C. Cheng, and Ji Zhang. “AMOEBA-RT:
Run-Time Verification of Adaptive Software.” In:Models in Software
Engineering. Ed. by Holger Giese. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2008, pp. 212–224. isbn: 978-3-540-69073-
3. doi: 10.1007/978-3-540-69073-3_23.

[71] Abel Gómez, Jordi Cabot, and Manuel Wimmer. “TemporalEMF: A
Temporal Metamodeling Framework.” In: Conceptual Modeling. Ed.
by Juan C. Trujillo, Karen C. Davis, Xiaoyong Du, Zhanhuai Li, Tok
Wang Ling, Guoliang Li, and Mong Li Lee. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2018, pp. 365–381.
isbn: 978-3-030-00847-5. doi: 10.1007/978-3-030-00847-5_26.

[72] Google Inc. Google Core Libraries for Java. Guava. url: https://
github.com/google/guava (visited on 07/25/2023).

[73] Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansum-
meren. “On the Expressiveness of Languages for Complex Event Recog-
nition.” In: 23rd International Conference on Database Theory (ICDT
2020). Ed. by Carsten Lutz and Jean Christoph Jung. Vol. 155. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 15:1–15:17.
isbn: 978-3-95977-139-9. doi: 10.4230/LIPIcs.ICDT.2020.15.

[74] SzilviaGyapay, ReikoHeckel, andDániel Varró. “GraphTransformation
with Time: Causality and Logical Clocks.” In: Graph Transformation.
Ed. by Andrea Corradini, Hartmut Ehrig, Hans -Jörg Kreowski, and
Grzegorz Rozenberg. Red. by Gerhard Goos, Juris Hartmanis, and Jan
van Leeuwen. Vol. 2505. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 120–134. isbn: 978-3-540-45832-6. doi: 10.1007/3-540-
45832-8_11.

[75] Annegret Habel and Karl-Heinz Pennemann. “Correctness of High-
Level Transformation Systems Relative to Nested Conditions.” In:Math-
ematical Structures in Computer Science 19.2 (Apr. 1, 2009), pp. 245–296.
issn: 0960-1295.

[76] Martin Haeusler, Thomas Trojer, Johannes Kessler, Matthias Farwick,
Emmanuel Nowakowski, and Ruth Breu. “Chronosphere: A Graph-
Based EMFModel Repository for IT Landscape Models.” In: Software
and Systems Modeling 18.6 (Dec. 1, 2019), pp. 3487–3526. issn: 1619-1374.
doi: 10.1007/s10270-019-00725-0.

[77] Sylvain Hallé. “When RVMeets CEP.” In: Runtime Verification. Ed. by
Yliès Falcone and César Sánchez. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2016, pp. 68–91. isbn: 978-3-
319-46982-9. doi: 10.1007/978-3-319-46982-9_6.

[78] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong
Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen.
“Chronos: A Graph Engine for Temporal Graph Analysis.” In: Proceed-
ings of the Ninth European Conference on Computer Systems. EuroSys
’14. New York, NY, USA: ACM, 2014, 1:1–1:14. isbn: 978-1-4503-2704-6.
doi: 10.1145/2592798.2592799.

https://doi.org/10.1007/978-3-540-69073-3_23
https://doi.org/10.1007/978-3-030-00847-5_26
https://github.com/google/guava
https://github.com/google/guava
https://doi.org/10.4230/LIPIcs.ICDT.2020.15
https://doi.org/10.1007/3-540-45832-8_11
https://doi.org/10.1007/3-540-45832-8_11
https://doi.org/10.1007/s10270-019-00725-0
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1145/2592798.2592799

120 bibliography

[79] E. N. Hanson, S. Bodagala, and U. Chadaga. “Trigger Condition Testing
and View Maintenance Using Optimized Discrimination Networks.”
In: IEEE Transactions on Knowledge and Data Engineering 14.2 (Mar.
2002), pp. 261–280. issn: 1558-2191. doi: 10.1109/69.991716.

[80] Thomas Hartmann, François Fouquet, Matthieu Jimenez, Romain Rou-
voy, and Yves Le Traon. “Analyzing Complex Data in Motion at Scale
with Temporal Graphs.” In:The 29th International Conference on Soft-
ware Engineering and Knowledge Engineering, Wyndham Pittsburgh
University Center, Pittsburgh, PA, USA, July 5-7, 2017. Ed. by Xudong He.
KSI Research Inc. and Knowledge Systems Institute Graduate School,
2017, pp. 596–601. doi: 10.18293/SEKE2017-048.

[81] Klaus Havelund, Moran Omer, and Doron Peled. “Monitoring First-
Order Interval Logic.” In: Software Engineering and Formal Methods.
Ed. by Radu Calinescu and Corina S. Păsăreanu. Cham: Springer In-
ternational Publishing, 2021, pp. 66–83. isbn: 978-3-030-92124-8. doi:
10.1007/978-3-030-92124-8_4.

[82] Klaus Havelund and Doron Peled. “Efficient Runtime Verification of
First-Order Temporal Properties.” In:Model Checking Software. Ed. by
María del Mar Gallardo and Pedro Merino. Vol. 10869. Cham: Springer
International Publishing, 2018, pp. 26–47. isbn: 978-3-319-94110-3.

[83] Klaus Havelund and Doron Peled. “Runtime Verification: From Propo-
sitional to First-Order Temporal Logic.” In: Runtime Verification. Ed.
by Christian Colombo and Martin Leucker. Lecture Notes in Com-
puter Science. Springer International Publishing, 2018, pp. 90–112. isbn:
978-3-030-03769-7.

[84] KlausHavelund andDoron Peled. “BDDs for RepresentingData in Run-
timeVerification.” In:RuntimeVerification. Ed. by JyotirmoyDeshmukh
and Dejan Ničković. Vol. 12399. Cham: Springer International Publish-
ing, 2020, pp. 107–128. isbn: 978-3-030-60508-7. doi: 10.1007/978-
3-030-60508-7_6.

[85] Klaus Havelund and Doron Peled. “First-Order Timed Runtime Veri-
fication Using BDDs.” In: Automated Technology for Verification and
Analysis. Ed. by Dang Van Hung and Oleg Sokolsky. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2020,
pp. 3–24. isbn: 978-3-030-59152-6. doi: 10.1007/978-3-030-59152-
6_1.

[86] Klaus Havelund and Doron Peled. “An Extension of First-Order LTL
with Rules with Application to Runtime Verification.” In: International
Journal on Software Tools for Technology Transfer 23.4 (Aug. 1, 2021),
pp. 547–563. issn: 1433-2787. doi: 10.1007/s10009-021-00626-y.

[87] Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Zălinescu.
“Monitoring Events That Carry Data.” In: Lectures on Runtime Verifi-
cation: Introductory and Advanced Topics. Ed. by Ezio Bartocci and
Yliès Falcone. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 61–102. isbn: 978-3-319-75632-5. doi:
10.1007/978-3-319-75632-5_3.

https://doi.org/10.1109/69.991716
https://doi.org/10.18293/SEKE2017-048
https://doi.org/10.1007/978-3-030-92124-8_4
https://doi.org/10.1007/978-3-030-60508-7_6
https://doi.org/10.1007/978-3-030-60508-7_6
https://doi.org/10.1007/978-3-030-59152-6_1
https://doi.org/10.1007/978-3-030-59152-6_1
https://doi.org/10.1007/s10009-021-00626-y
https://doi.org/10.1007/978-3-319-75632-5_3

bibliography 121

[88] Stephan Hildebrandt. “On the Performance and Conformance of Triple
Graph Grammar Implementations.” PhD thesis. Germany: Hasso Plat-
tner Institute, University of Potsdam, June 2014.

[89] Nicolas Hili, Mojtaba Bagherzadeh, Karim Jahed, and Juergen Dingel.
“AModel-Based Architecture for Interactive Run-TimeMonitoring.” In:
Software and Systems Modeling (SoSyM) 19.4 (July 1, 2020), pp. 959–981.
issn: 1619-1366. doi: 10.1007/s10270-020-00780-y.

[90] Paul Hunter, Joel Ouaknine, and James Worrell. “Expressive Complete-
ness for Metric Temporal Logic.” In: Proceedings of the 2013 28th Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’13. USA:
IEEE Computer Society, June 25, 2013, pp. 349–357. isbn: 978-0-7695-
5020-6. doi: 10.1109/LICS.2013.41.

[91] DidacGil De La Iglesia andDannyWeyns. “MAPE-K Formal Templates
to Rigorously Design Behaviors for Self-Adaptive Systems.” In: ACM
Transactions on Autonomous and Adaptive Systems 10.3 (Sept. 1, 2015),
15:1–15:31. issn: 1556-4665. doi: 10.1145/2724719.

[92] Bilal Kanso and Safouan Taha. “Specification of Temporal Properties
with OCL.” In: Science of Computer Programming 96.P4 (Dec. 15, 2014),
pp. 527–551. issn: 0167-6423. doi: 10.1016/j.scico.2014.02.029.

[93] Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic
Computing.” In: Computer 36.1 (2003), pp. 41–50. doi: 10.1109/MC.
2003.1160055.

[94] Udayan Khurana and Amol Deshpande. “Efficient Snapshot Retrieval
overHistorical GraphData.” In: 2013 IEEE 29th International Conference
on Data Engineering (ICDE). Apr. 2013, pp. 997–1008. doi: 10.1109/
ICDE.2013.6544892.

[95] Florian Klein and Holger Giese. “Joint Structural and Temporal Prop-
erty Specification Using Timed Story Scenario Diagrams.” In: Funda-
mental Approaches to Software Engineering. Ed. by Matthew B. Dwyer
and Antónia Lopes. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2007, pp. 185–199. isbn: 978-3-540-71289-3. doi: 10.
1007/978-3-540-71289-3_16.

[96] Ron Koymans. “Specifying Real-Time Properties withMetric Temporal
Logic.” In: Real-Time Systems 2.4 (Nov. 1, 1990), pp. 255–299. issn: 1573-
1383. doi: 10.1007/BF01995674.

[97] Christian Krause, Daniel Johannsen, Radwan Deeb, Kai-Uwe Sattler,
David Knacker, andAntonNiadzelka. “An SQL-BasedQuery Language
and Engine for Graph Pattern Matching.” In: Graph Transformation.
Ed. by Rachid Echahed and Mark Minas. Vol. 9761. Cham: Springer
International Publishing, 2016, pp. 153–169. isbn: 978-3-319-40530-8.
doi: 10.1007/978-3-319-40530-8_10.

[98] Pradeep Kumar and H. Howie Huang. “GraphOne: A Data Store for
Real-time Analytics on Evolving Graphs.” In: ACM Transactions on
Storage 15.4 (Jan. 16, 2020), 29:1–29:40. issn: 1553-3077. doi: 10.1145/
3364180.

https://doi.org/10.1007/s10270-020-00780-y
https://doi.org/10.1109/LICS.2013.41
https://doi.org/10.1145/2724719
https://doi.org/10.1016/j.scico.2014.02.029
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/ICDE.2013.6544892
https://doi.org/10.1109/ICDE.2013.6544892
https://doi.org/10.1007/978-3-540-71289-3_16
https://doi.org/10.1007/978-3-540-71289-3_16
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-319-40530-8_10
https://doi.org/10.1145/3364180
https://doi.org/10.1145/3364180

122 bibliography

[99] Orna Kupferman and Moshe Y. Vardi. “Model Checking of Safety Prop-
erties.” In: Formal Methods in System Design 19.3 (Nov. 1, 2001), pp. 291–
314. issn: 1572-8102. doi: 10.1023/A:1011254632723.

[100] Leslie Lamport. “Proving theCorrectness ofMultiprocess Programs.” In:
IEEE Transactions on Software Engineering SE-3.2 (Mar. 1977), pp. 125–
143. issn: 1939-3520. doi: 10.1109/TSE.1977.229904.

[101] Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi. “A Frame-
work for Rule-Based Dynamic Adaptation.” In: Trustworthly Global
Computing. Ed. byMartinWirsing, Martin Hofmann, and Axel Rausch-
mayer. LectureNotes inComputer Science. Berlin,Heidelberg: Springer,
2010, pp. 284–300. isbn: 978-3-642-15640-3. doi: 10.1007/978-3-
642-15640-3_19.

[102] François Laroussinie, NicolasMarkey, and Philippe Schnoebelen. “Tem-
poral Logic with Forgettable Past.” In: Proceedings 17th Annual IEEE
Symposium on Logic in Computer Science. IEEE, 2002, pp. 383–392.

[103] LDBC Social Network Benchmark task force.The LDBC Social Network
Benchmark (Version 2.2.1). Linked Data Benchmark Council, 2022. url:
https://github.com/ldbc/ldbc_snb_docs.

[104] Pattie Maes. “Concepts and Experiments in Computational Reflection.”
In: ACM SIGPLAN Notices 22.12 (Dec. 1, 1987), pp. 147–155. issn: 0362-
1340. doi: 10.1145/38807.38821.

[105] Jeff Magee and Jeff Kramer. “Dynamic Structure in Software Architec-
tures.” In: ACM SIGSOFT Software Engineering Notes 21.6 (Oct. 1, 1996),
pp. 3–14. issn: 0163-5948. doi: 10.1145/250707.239104.

[106] Oded Maler, Dejan Nickovic, and Amir Pnueli. “Checking Temporal
Properties of Discrete, Timed and Continuous Behaviors.” In: Pillars of
Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the
Occasion ofHis 85th Birthday. Ed. byArnonAvron,NachumDershowitz,
and Alexander Rabinovich. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2008, pp. 475–505. isbn: 978-3-540-78127-1. doi:
10.1007/978-3-540-78127-1_26.

[107] Oded Maler and Dejan Ničković. “Monitoring Properties of Analog
and Mixed-Signal Circuits.” In: International Journal on Software Tools
for Technology Transfer 15.3 (June 1, 2013), pp. 247–268. issn: 1433-2787.
doi: 10.1007/s10009-012-0247-9.

[108] Felix Mannhardt and Daan Blinde. “Analyzing the Trajectories of Pa-
tients with Sepsis Using Process Mining.” In: RADAR+EMISA@CAiSE,
Essen, Germany, June 12-13, 2017. Ed. by Jens Gulden, Selmin Nurcan,
Iris Reinhartz-Berger, Wided Guédria, Palash Bera, Sérgio Guerreiro,
Michael Fellmann, and Matthias Weidlich. Vol. 1859. CEURWorkshop
Proceedings. CEUR-WS.org, 2017, pp. 72–80. url: http://ceur-
ws.org/Vol-1859/bpmds-08-paper.pdf.

[109] Diego Marmsoler and Ana Petrovska. “Runtime Verification for Dy-
namic Architectures.” In: Journal of Logical and Algebraic Methods in
Programming 118 (Jan. 1, 2021), p. 100618. issn: 2352-2208. doi: 10.
1016/j.jlamp.2020.100618.

https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/978-3-642-15640-3_19
https://doi.org/10.1007/978-3-642-15640-3_19
https://github.com/ldbc/ldbc_snb_docs
https://doi.org/10.1145/38807.38821
https://doi.org/10.1145/250707.239104
https://doi.org/10.1007/978-3-540-78127-1_26
https://doi.org/10.1007/s10009-012-0247-9
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf
https://doi.org/10.1016/j.jlamp.2020.100618
https://doi.org/10.1016/j.jlamp.2020.100618

bibliography 123

[110] Maria Massri, Philippe Raipin, and Pierre Meye. “GDBAlive: A Tempo-
ral Graph Database Built on Top of a Columnar Data Store.” In: Journal
of Advances in Information Technology 12.3 (2021). issn: 17982340. doi:
10.12720/jait.12.3.169-178.

[111] Alexandra Mazak, Sabine Wolny, Abel Gómez, Jordi Cabot, Manuel
Wimmer, and Gerti Kappel. “Temporal Models on Time Series
Databases.” In:The Journal of Object Technology 19.3 (2020), 3:1. issn:
1660-1769. doi: 10.5381/jot.2020.19.3.a14.

[112] Philip K. McKinley, Sayed Masoud Sadjadi, Eric P. Kasten, and Betty
H. C. Cheng. “Composing Adaptive Software.” In: Computer 37.7 (July
2004), pp. 56–64. issn: 1558-0814. doi: 10.1109/MC.2004.48.

[113] MDELab. InTempo Eclipse Plugin Homepage. 2020. url: https://
www.hpi.uni- potsdam.de/giese/public/mdelab/mdelab-

projects/intempo/ (visited on 07/25/2023).

[114] MDELab. SDM Tools. url: https://www.hpi.uni-potsdam.de/
giese / public / mdelab / mdelab - projects / story - diagram -

tools/ (visited on 07/25/2023).

[115] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong
Zhou, Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen. “Im-
mortalGraph: A System for Storage and Analysis of Temporal Graphs.”
In: ACM Transactions on Storage 11.3 (July 24, 2015), 14:1–14:34. issn:
1553-3077. doi: 10.1145/2700302.

[116] Ramon E. Moore, R. Baker Kearfott, andMichael J. Cloud. Introduction
to Interval Analysis. Society for Industrial and Applied Mathematics,
Jan. 2009. isbn: 978-0-89871-771-6. doi: 10.1137/1.9780898717716.

[117] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and
Arnor Solberg. “Models@ Run.Time to Support Dynamic Adaptation.”
In: Computer 42.10 (Oct. 1, 2009), pp. 44–51. issn: 0018-9162. doi:
10.1109/MC.2009.327.

[118] United Kingdom National Health Service. Records Management Code
of Practice for Health and Social Care 2021. 2021. url: https : / /
transform . england . nhs . uk / information - governance /

guidance/records-management-code/ (visited on 07/25/2023).

[119] Office for Civil Rights (OCR). Summary of the HIPAA Privacy Rule.
HHS.gov. May 7, 2008. url: https://www.hhs.gov/hipaa/for-
professionals/privacy/laws-regulations/index.html (vis-
ited on 07/25/2023).

[120] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heim-
bigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.
Rosenblum, and Alexander L. Wolf. “An Architecture-Based Approach
to Self-Adaptive Software.” In: IEEE Intelligent Systems 14.3 (May 1, 1999),
pp. 54–62. issn: 1541-1672. doi: 10.1109/5254.769885.

https://doi.org/10.12720/jait.12.3.169-178
https://doi.org/10.5381/jot.2020.19.3.a14
https://doi.org/10.1109/MC.2004.48
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/intempo/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/intempo/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/intempo/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/story-diagram-tools/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/story-diagram-tools/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/story-diagram-tools/
https://doi.org/10.1145/2700302
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1109/MC.2009.327
https://transform.england.nhs.uk/information-governance/guidance/records-management-code/
https://transform.england.nhs.uk/information-governance/guidance/records-management-code/
https://transform.england.nhs.uk/information-governance/guidance/records-management-code/
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://doi.org/10.1109/5254.769885

124 bibliography

[121] Juan Marcelo Parra-Ullauri, Antonio García-Domínguez, Nelly Ben-
como, Changgang Zheng, Chen Zhen, Juan Boubeta-Puig, Guadalupe
Ortiz, and Shufan Yang. “Event-Driven Temporal Models for Explana-
tions - ETeMoX: Explaining Reinforcement Learning.” In: Software and
Systems Modeling 21.3 (June 1, 2022), pp. 1091–1113. issn: 1619-1374. doi:
10.1007/s10270-021-00952-4.

[122] Doron Peled and Klaus Havelund. “Refining the Safety–Liveness Classi-
fication of Temporal Properties According to Monitorability.” In:Mod-
els, Mindsets, Meta: The What, the How, and the Why Not? Essays Dedi-
cated to Bernhard Steffen on the Occasion of His 60th Birthday. Ed. by
Tiziana Margaria, Susanne Graf, and Kim G. Larsen. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2019,
pp. 218–234. isbn: 978-3-030-22348-9. url: https://doi.org/10.
1007/978-3-030-22348-9_14.

[123] Giles Reger andDavid Rydeheard. “FromFirst-order Temporal Logic to
Parametric Trace Slicing.” In: Runtime Verification. Ed. by Ezio Bartocci
and Rupak Majumdar. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2015, pp. 216–232. isbn: 978-3-319-
23820-3. doi: 10.1007/978-3-319-23820-3_14.

[124] Arend Rensink. “Representing First-Order Logic Using Graphs.”
In: Graph Transformations. Ed. by Hartmut Ehrig, Gregor Engels,
Francesco Parisi-Presicce, and Grzegorz Rozenberg. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2004, pp. 319–335.
isbn: 978-3-540-30203-2. doi: 10.1007/978-3-540-30203-2_23.

[125] Owen Reynolds, Antonio García-Domínguez, and Nelly Bencomo.
“Cronista: A Multi-Database Automated Provenance Collection Sys-
tem for Runtime-Models.” In: Information and Software Technology 141
(Jan. 1, 2022), p. 106694. issn: 0950-5849. doi: 10.1016/j.infsof.
2021.106694.

[126] AndrewRhodes et al. “Surviving Sepsis Campaign: International Guide-
lines for Management of Sepsis and Septic Shock: 2016.” In: Intensive
Care Medicine 43.3 (Mar. 1, 2017), pp. 304–377. issn: 1432-1238. doi:
10.1007/s00134-017-4683-6.

[127] Mark Richters and Martin Gogolla. “OCL: Syntax, Semantics, and
Tools.” In: Object Modeling with the OCL: The Rationale behind the
Object Constraint Language. Ed. by Tony Clark and JosWarmer. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2002, pp. 42–
68. isbn: 978-3-540-45669-8. doi: 10.1007/3-540-45669-4_4.

[128] William Robinson. “Extended OCL for Goal Monitoring.” In: Electronic
Communications of the EASST 9.0 (0 Nov. 23, 2007). issn: 1863-2122.
doi: 10.14279/tuj.eceasst.9.105.

[129] Tobias Rötschke and Andy Schürr. “Temporal Graph Queries to Sup-
port Software Evolution.” In: Graph Transformations. Ed. by Andrea
Corradini, Hartmut Ehrig, UgoMontanari, Leila Ribeiro, and Grzegorz
Rozenberg. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2006, pp. 291–305. isbn: 978-3-540-38872-2. doi: 10.1007/
11841883_21.

https://doi.org/10.1007/s10270-021-00952-4
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-319-23820-3_14
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1016/j.infsof.2021.106694
https://doi.org/10.1016/j.infsof.2021.106694
https://doi.org/10.1007/s00134-017-4683-6
https://doi.org/10.1007/3-540-45669-4_4
https://doi.org/10.14279/tuj.eceasst.9.105
https://doi.org/10.1007/11841883_21
https://doi.org/10.1007/11841883_21

bibliography 125

[130] Patrice C Roy, Samina Raza Abidi, and Syed Sibte Raza Abidi. “Moni-
toring Medication Adherence in Smart Environments in the Context of
Patient Self-Management: A Knowledge-Driven Approach.” In: Smart
Technologies in Healthcare. CRC Press, 2017, pp. 195–223.

[131] Eric Rutten, Nicolas Marchand, and Daniel Simon. “Feedback Control
as MAPE-K Loop in Autonomic Computing.” In: Software Engineer-
ing for Self-Adaptive Systems III. Assurances. Ed. by Rogério de Lemos,
David Garlan, Carlo Ghezzi, and Holger Giese. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2017, pp. 349–
373. isbn: 978-3-319-74183-3. doi: 10.1007/978-3-319-74183-3_12.

[133] Lucas Sakizloglou and Sona Ghahremani. Simplified Event Logs for
Sepsis Patient Trajectories. 2020. url: https://zenodo.org/record/
3989590 (visited on 07/25/2023).

[134] Lucas Sakizloglou, Sona Ghahremani, and Matthias Barkowsky. Event
Logs Containing Deletions. 2021. url: http://doi.org/10.5281/
zenodo.5042439 (visited on 07/25/2023).

[138] Mazeiar Salehie and Ladan Tahvildari. “Self-Adaptive Software: Land-
scape and Research Challenges.” In: ACM Transactions on Autonomous
and Adaptive Systems 4.2 (May 21, 2009), 14:1–14:42. issn: 1556-4665.
doi: 10.1145/1516533.1516538.

[139] Jesús Sánchez Cuadrado and Juan de Lara. “Streaming Model Transfor-
mations: Scenarios, Challenges and Initial Solutions.” In:Theory and
Practice of Model Transformations. Ed. by Keith Duddy and Gerti Kap-
pel. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2013, pp. 1–16. isbn: 978-3-642-38883-5. doi: 10.1007/978-3-642-
38883-5_1.

[140] SAP OrientDB. Live Query ⋅ OrientDB Manual. url: http : / /

orientdb.com/docs/3.1.x/java/Live-Query.html (visited
on 07/25/2023).

[141] Joshua Schneider, David Basin, Srđan Krstić, and Dmitriy Traytel. “A
Formally Verified Monitor for Metric First-Order Temporal Logic.” In:
Runtime Verification. Ed. by Bernd Finkbeiner and Leonardo Mariani.
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2019, pp. 310–328. isbn: 978-3-030-32079-9. doi: 10.1007/
978-3-030-32079-9_18.

[142] Sven Schneider, Leen Lambers, and Fernando Orejas. “Automated
Reasoning for Attributed Graph Properties.” In: International Journal
on Software Tools for Technology Transfer 20.6 (6 Nov. 1, 2018), pp. 705–
737. issn: 1433-2787. doi: 10.1007/s10009-018-0496-3.

[143] Sven Schneider, MariaMaximova, Lucas Sakizloglou, and Holger Giese.
“Formal Testing of Timed Graph Transformation Systems Using Metric
Temporal Graph Logic.” In: International Journal on Software Tools
for Technology Transfer 23.3 (June 2021), pp. 411–488. issn: 1433-2779,
1433-2787. doi: 10.1007/s10009-020-00585-w.

https://doi.org/10.1007/978-3-319-74183-3_12
https://zenodo.org/record/3989590
https://zenodo.org/record/3989590
http://doi.org/10.5281/zenodo.5042439
http://doi.org/10.5281/zenodo.5042439
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1007/978-3-642-38883-5_1
https://doi.org/10.1007/978-3-642-38883-5_1
http://orientdb.com/docs/3.1.x/java/Live-Query.html
http://orientdb.com/docs/3.1.x/java/Live-Query.html
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/s10009-020-00585-w

126 bibliography

[144] Sven Schneider, Lucas Sakizloglou, MariaMaximova, and Holger Giese.
“Optimistic and Pessimistic On-the-fly Analysis for Metric Temporal
Graph Logic.” In: Graph Transformation. Ed. by Fabio Gadducci and
Timo Kehrer. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 276–294. isbn: 978-3-030-51372-6.
doi: 10.1007/978-3-030-51372-6_16.

[145] Michael Soden and Hajo Eichler. “Temporal Extensions of OCL Revis-
ited.” In:Model Driven Architecture - Foundations and Applications. Ed.
by Richard F. Paige, Alan Hartman, and Arend Rensink. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 190–205.
isbn: 978-3-642-02674-4. doi: 10.1007/978-3-642-02674-4_14.

[146] Chunyao Song, Tingjian Ge, Cindy Chen, and Jie Wang. “Event Pattern
Matching over Graph Streams.” In: Proceedings of the VLDB Endow-
ment 8.4 (Dec. 1, 2014), pp. 413–424. issn: 2150-8097. doi: 10.14778/
2735496.2735504.

[147] Michael Spijkerman. “Monitoring Gemischt Struktureller und Tempo-
raler Eigenschaften Von UMLModellen.” MA thesis. Germany: Faculty
of Software Engineering, University of Paderborn, Oct. 2007.

[148] Florian Stallmann. “A Model-Driven Approach to Multi-Agent System
Design.” PhD thesis. Germany: University of Paderborn, 2008. url:
https://digital.ub.uni- paderborn.de/hsmig/content/

titleinfo/1109.

[149] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework 2.0. 2nd ed. Addison-Wesley Profes-
sional, 2009. isbn: 978-0-321-33188-5.

[150] Lars Stockmann, Sven Laux, and Eric Bodden. “Using Architectural
Runtime Verification for Offline Data Analysis.” In: Journal of Auto-
motive Software Engineering 2.1 (2021), p. 1. issn: 2589-2258. doi: 10.
2991/jase.d.210205.001.

[151] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik,
Gabriele Taentzer, and Jennifer Plöger. “Variability-BasedModel Trans-
formation: Formal Foundation and Application.” In: Formal Aspects
of Computing 30.1 (Jan. 1, 2018), pp. 133–162. issn: 1433-299X. doi:
10.1007/s00165-017-0441-3.

[152] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor
Bergmann, and Dániel Varró. “IncQuery-D: A Distributed Incremental
Model Query Framework in the Cloud.” In:Model-Driven Engineering
Languages and Systems. Ed. by Juergen Dingel, Wolfram Schulte, Isidro
Ramos, Silvia Abrahão, and Emilio Insfran. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2014, pp. 653–669.
isbn: 978-3-319-11653-2. doi: 10.1007/978-3-319-11653-2_40.

[153] Michael Szvetits and Uwe Zdun. “Systematic Literature Review of the
Objectives, Techniques, Kinds, and Architectures of Models at Run-
time.” In: Software & Systems Modeling 15.1 (Feb. 1, 2016), pp. 31–69.
issn: 1619-1374. doi: 10.1007/s10270-013-0394-9.

https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/978-3-642-02674-4_14
https://doi.org/10.14778/2735496.2735504
https://doi.org/10.14778/2735496.2735504
https://digital.ub.uni-paderborn.de/hsmig/content/titleinfo/1109
https://digital.ub.uni-paderborn.de/hsmig/content/titleinfo/1109
https://doi.org/10.2991/jase.d.210205.001
https://doi.org/10.2991/jase.d.210205.001
https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/10.1007/s10270-013-0394-9

bibliography 127

[154] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Be-
nedek Izsó, István Ráth, Zoltán Szatmári, and Dániel Varró. “EMF-
IncQuery: An Integrated Development Environment for Live Model
Queries.” In: Science of Computer Programming 98 (Feb. 1, 2015), pp. 80–
99. issn: 0167-6423. doi: 10.1016/j.scico.2014.01.004.

[155] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István
Ráth, and Zoltán Ujhelyi. “Road to a Reactive and Incremental Model
Transformation Platform:Three Generations of the Viatra Framework.”
In: Software & Systems Modeling 15.3 (July 1, 2016), pp. 609–629. issn:
1619-1374. doi: 10.1007/s10270-016-0530-4.

[156] Thomas Vogel and Holger Giese. “Adaptation and Abstract Runtime
Models.” In: Proceedings of the 2010 ICSE Workshop on Software En-
gineering for Adaptive and Self-Managing Systems. SEAMS ’10. New
York, NY, USA: Association for Computing Machinery, May 3, 2010,
pp. 39–48. isbn: 978-1-60558-971-8. doi: 10.1145/1808984.1808989.

[157] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese,
and Basil Becker. “Incremental Model Synchronization for Efficient
Run-Time Monitoring.” In: Models in Software Engineering. Ed. by
Sudipto Ghosh. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2010, pp. 124–139. isbn: 978-3-642-12261-3. doi: 10.1007/
978-3-642-12261-3_13.

[158] Thomas Vogel, Andreas Seibel, and Holger Giese. “The Role of Models
andMegamodels at Runtime.” In:Models in Software Engineering. Ed. by
Juergen Dingel and Arnor Solberg. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2011, pp. 224–238. isbn: 978-3-642-21210-9.
doi: 10.1007/978-3-642-21210-9_22.

[159] Jos Warmer and Anneke Kleppe.The Object Constraint Language: Pre-
cise Modeling with UML. USA: Addison-Wesley Longman Publishing
Co., Inc., 1998. isbn: 978-0-201-37940-2.

[160] JackWaudby, BenjaminA. Steer, ArnauPrat-Pérez, andGábor Szárnyas.
“Supporting Dynamic Graphs and Temporal Entity Deletions in the
LDBC Social Network Benchmark’s Data Generator.” In: Proceedings
of the 3rd Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA).
SIGMOD/PODS ’20: International Conference onManagement ofData.
PortlandORUSA:ACM, June 14, 2020, pp. 1–8. isbn: 978-1-4503-8021-8.
doi: 10.1145/3398682.3399165.

[161] Danny Weyns and Radu Calinescu. “Tele Assistance: A Self-Adaptive
Service-Based System Examplar.” In: Proceedings of the 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems. SEAMS ’15. Florence, Italy: IEEE Press, May 16,
2015, pp. 88–92.

[162] Walter Wilson, Kathryn A. Taubert, Michael Gewitz, Peter B. Lock-
hart, Larry M. Baddour, Matthew Levison, Ann Bolger, Christopher H.
Cabell, Masato Takahashi, Robert S. Baltimore, et al. “Prevention of
Infective Endocarditis: A Guideline From the American Heart Associa-

https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1145/1808984.1808989
https://doi.org/10.1007/978-3-642-12261-3_13
https://doi.org/10.1007/978-3-642-12261-3_13
https://doi.org/10.1007/978-3-642-21210-9_22
https://doi.org/10.1145/3398682.3399165

128 bibliography

tion.” In: Circulation 116.15 (2007), pp. 1736–1754. url: http://circ.
ahajournals.org/content/116/15/1736.short.

[163] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software Engineering.
Berlin Heidelberg: Springer-Verlag, 2012. isbn: 978-3-642-29043-5. doi:
10.1007/978-3-642-29044-2.

[164] Ji Zhang and Betty H. C. Cheng. “Using Temporal Logic to Specify
Adaptive Program Semantics.” In: Journal of Systems and Software. Ar-
chitecting Dependable Systems 79.10 (Oct. 1, 2006), pp. 1361–1369. issn:
0164-1212. doi: 10.1016/j.jss.2006.02.062.

[165] Paul Ziemann and Martin Gogolla. “OCL Extended with Temporal
Logic.” In: Perspectives of System Informatics. Ed. by Manfred Broy and
Alexandre V. Zamulin. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2003, pp. 351–357. isbn: 978-3-540-39866-0. doi:
10.1007/978-3-540-39866-0_35.

[166] Sheila Zingg, Srđan Krstić, Martin Raszyk, Joshua Schneider, and
Dmitriy Traytel. “Verified First-Order Monitoring with Recursive
Rules.” In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Dana Fisman and Grigore Rosu. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2022, pp. 236–
253. isbn: 978-3-030-99527-0. doi: 10.1007/978-3-030-99527-
0_13.

[167] Albert Zündorf. “Rigorous Object Oriented Software Development.”
HabilitationThesis. Germany: University of Paderborn, 2001.

http://circ.ahajournals.org/content/116/15/1736.short
http://circ.ahajournals.org/content/116/15/1736.short
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1016/j.jss.2006.02.062
https://doi.org/10.1007/978-3-540-39866-0_35
https://doi.org/10.1007/978-3-030-99527-0_13
https://doi.org/10.1007/978-3-030-99527-0_13

ATECHN ICAL SUPPLEMENT

a.1 intervals

An interval is a non-empty, convex set I ⊆ R and has one of the following
forms: (τ, τ′), [τ, τ′),(τ, τ′], [τ, τ′]where (i) τ, τ′ is the left and right end-point
of the interval, respectively (ii) τ ≤ τ′ (iii) τ, τ′ ∈R. A round bracket, square
bracket denotes that the end-point is included in, respectively excluded from,
the interval—correspondingly, an interval is open if both brackets are round,
half-open if one of the brackets is round, or closed if both brackets are square.We
also denote the left and right end-point of I by ℓ(I) and r(I), respectively. For
example, the interval I = {t ∣ t ∈R∧0 ≤ t < 5}, denoted by [0,5), is bounded and
half-open (more precisely, left-closed and right-open)with ℓ(I) = 0 and r(I) = 5.
An interval is bounded, unless r(I) =∞, whereby an interval is unbounded.
The set of all intervals is denoted by I. Two intervals k, l ∈ I are left-adjacent

when r(k)= ℓ(l) and k is right-open and l is left-closed; right-adjacent intervals
are defined symmetrically. The two intervals are overlapping when k∩ l /= ∅.
For k, we denote the union ℓ(k)∪ k, i.e., making k left-closed, by +k and the
union r(k)∪ k by k+. Note that when r(k) =∞, k+ = k.
We define the interval addition ⊕ and interval subtraction ⊖ as usual [116].

Let k, l be intervals in I. Then,

k⊕ l = {τ+ τ′ ∣τ ∈ k, τ′ ∈ l}

and

k⊖ l = {τ− τ′ ∣τ ∈ k, τ′ ∈ l}

respectively. Essentially,

k⊕ l = [ℓ(k)+ ℓ(l), r(k)+ r(l)]

and

k⊖ l = [ℓ(k)− r(l), r(k)− ℓ(l)]

Note the reversal of end-points in subtraction. In both operations the involve-
ment of an open end-point leads to the end-point of the result also being
open.
For the proof of Theorem 3.2.1, we rely on the distributivity of an interval

addition or subtraction with the regular set intersection, captured by the lemma
below.

Lemma A.1.1 (Distributivity of interval operation with regular set intersection).
Let K ,L, I ∈ I and ⋆ ∈ {⊕,⊖}. If K ∩L /= ∅, (K ⋆ I)∩(L⋆ I) = (K ∩L)⋆ I.

129

130 technical supplement

Proof. Note that the negation −I for the interval I is defined as {−τ ∣τ ∈ I}. It
follows from the definition of addition and subtraction that K⊖ I = K⊕(−I)
[see 116, p. 12], thus we only need to show the lemma for addition. The proof
proceeds by showing inclusion in both directions.
We commence by hypothesizing (K ⊕ I) ∩ (L⊕ I) ⊆ (K ∩ L)⊕ I. Let τ ∈
(K⊕ I)∩(L⊕ I). It follows that τ ∈ (K⊕ I) and τ ∈ (L⊕ I). From these two
memberships of τ, it follows that (i) there exists a k ∈ K and an i ∈ I such that
k+ i = τ (ii) there exists an l ∈ L and an i′ ∈ I such that l + i′ = τ. Note that, since
K ∩L /= ∅, it may be that k ∈ L—then from k ∈ L, k ∈ K, and k+ i = τ we can
deduce τ ∈ (K ∩L)⊕ I and, in turn, that the initial hypothesis holds. A similar
deduction can be made for the case when l ∈ K. In the case where k /∈ L and
l /∈ K, it follows that k /= l . Assume, without loss of generality, that k < l . From
the membership of τ it follows that there exists z ∈ K ∩L with k < z < l and a
t ∈ I with i < t < i′ such that z+ t = τ. From z ∈ K, z ∈ L, and t ∈ I, we can deduce
that z+ t ∈ (K ∩L)⊕ I. By z+ t = τ, we obtain τ ∈ (K ∩L)⊕ I.
We proceed with inclusion ⊇. Let τ ∈ (K ∩L)⊕ I. It follows that there exists

z ∈ (K ∩L)⊕ I and an i ∈ I such that z+ i = τ. From z ∈ K , i ∈ I it follows that
τ ∈ K ⊕ I and, similarly, from z ∈ L, i ∈ I, it follows that τ ∈ L⊕ I. Therefore
τ ∈ (K⊕ I)∩(L⊕ I).
By showing inclusion in both directions, we have shown the lemma to be

true.

a.2 amalgamated graph transformation rules

In order to support the varying behavior of marking rules required by a TGDN,
we employ amalgamated GT rules [25, 69] to realize Amalgamated Marking
Rules (AMRs). This section elaborates on amalgamated GT rules based on the
definitions in [25], focusing on non-deleting rules that feature neither ACs nor
attributes—we refer to [69] for a comprehensive presentation also covering
these aspects.
Amalgamated GT rules allow for matching various graph structures and

amalgamating, i.e., synchronizing, these matches over a common kernel match.
An amalgamated rule is based on a kernel rule andmulti-rules. The kernel rule
contains elements common to all rules and is to be applied only once; a multi-
rule extends the kernel rule andmay be applied arbitrarily many times. A kernel
morphism embeds a kernel rule into a givenmulti-rule and is defined as follows:
Given a rule rk ∶= ⟨ fk ∶ nk ↪ Rk⟩, called a kernel rule, and a rule rµ ∶= ⟨ fµ ∶ nµ ↪
Rµ⟩, called a multi-rule, a kernel morphism s ∶ rk → rµ , s = (sn , sR) consists of
the monomorphisms sn ∶ nk ↪ nµ and sR ∶ Rk ↪ Rµ such that nk contains only
those elements that are contained in both nµ and Rk and sR ○ fk = sn ○ fµ.
Technically, an amalgamated GT rule is defined based on an interaction

scheme, i.e., a bundle of kernel morphisms which describe how multi-rules
relate to the kernel rule. An amalgamated rule is constructed via an application
of the interaction scheme on a host graph: For each match for a multi-rule rµ
in the host graph which overlaps in a match for the kernel rule rk , a copy of
the multi-rule rµ,c is created together with a kernel morphism sµ,c ∶ rk → rµ,c
from the kernel rule to the copy; all copies are subsequently glued at the match
of their common kernel rule which induces the amalgamated GT rule r̃. The

A.3 proofs 131

LHS of r̃ consists of all the LHSs of the multi-rule copies and the LHS of rk ; the
RHS of r̃ consists of all the RHSs of the multi-rule copies and the RHS of rk .
When constructed, r̃ is a conventional GT rule.
The AMRs used in Section 4.1 are defined based on a single multi-rule.

Therefore, the interaction scheme of an AMR is effectively the kernel morphism
from the kernel rule to that multi-rule. The multi-rule of an AMR is an identity,
i.e., its LHS is identical to its RHS, and only tracks marking nodes created by
dependencies, such that the duration of these marking nodes can be taken into
consideration by the kernel rule.

a.3 proofs

a.3.1 Theorem 3.2.1: equality of satisfaction span and satisfaction computation

Additionally to a set of convex sets of time points, i.e., intervals, a fragmented
interval can be seen simply as a set of time points. In the following, when we
utilize the latter view, we underline the fragmented interval, e.g.,Z. Following is
the proof for Theorem 3.2.1, i.e., given a match m in H[τ] and an MTGC ψ, the
satisfaction span Y ofm for ψ overH[c] is given by the satisfaction computation
Z of m for ψ over H[c], that is, Y(m,ψ) =Z(m,ψ).

Proof. By structural induction over ψ. In the base case, we show the theorem
to be true for the MTGL operator true to which all MTGCs reduce. We omit
the straightforward steps for negation and conjunction.

• Base case: true.
By the semantics of MTGL, true is always satisfied, hence Y(m, true) =
Z(m, true) =R.

• Induction step: ψ = ∃(n̂, χ).
Assume that Y(m̂, χ) =Z(m̂, χ). We first show that:

Y(m,∃(n̂, χ)) ⊆ ⋃
m̂∈M̂
↪

λm̂ ∩Z(m̂, χ)

Let τ ∈ Y(m,∃(n̂, χ)). By the semantics, a match m̂ for n̂ exists such that m̂
is compatible with the enclosing match m, m̂ satisfies χ, and maxє∈E є.cts ≤
τ <minє∈E є.dts, with E the elements of m̂. By definition of Y and λ, it follows
that (i) τ ∈ Y(m̂, χ) and by the induction hypothesis τ ∈Z(m̂, χ) (ii) τ ∈ λm̂,
therefore, τ ∈ λm̂ ∩Z(m̂, χ) for some m̂ compatible with m.
We proceed with the inclusion ⊇. Let τ ∈V(m̂,∃(n̂, χ)) for some m̂ compati-
ble withm. By definition, τ ∈ λm̂∩Z(m̂, χ).Therefore there exists m̂ at τ with
maxє∈E є.cts ≤ τ <minє∈E є.dts and m̂ satisfies χ. Ergo, τ ∈ Y(m,∃(n̂, χ)).
By showing inclusion in both directions, we have shown the sets of time
points to be equal.

• Induction step: ψ = χUIω and ℓ(I) /= 0.
Assume that Y(m, χ) =Z(m, χ) and Y(m,ω) =Z(m,ω). We first show:

Y(m, χUIω) ⊆ ⋃
i∈Z(m,ω), j∈J i

j∩((j+∩ i)⊖ I)

132 technical supplement

Let τ ∈Y(m, χUIω). By the semantics, there exists a τ′ such that ω is satisfied
and at least for all τ′′ ∈ [τ, τ′) χ is satisfied. Therefore, τ′ is in some i′ ∈
Y(m,ω) and, by the induction hypothesis, i′ ∈Z(m,ω).Moreover, τ′ satisfies
the timing constraint I of until, thus τ′− τ ∈ I. It follows that there exists a
t ∈ I such that τ′− τ = t, ergo, τ = τ′− t. Therefore, we obtain that τ ∈ τ′⊖ I
and, in turn, τ ∈ i′⊖ I.
Observe that [τ, τ′) can’t be empty: from τ ∈ τ′⊖ I, it follows that τ′ ∈ τ⊕ I
and, since ℓ(I) /= 0 (and by I ⊆ R+

0 , 0 /∈ I), τ′ > τ. Therefore, there exists
some j′ ∈ Y(m, χ) and, by the induction hypothesis, also in Z(m, χ), with
[τ, τ′) ⊆ j′.The interval j′ is either overlapping or left-adjacent to the i′ which
contains τ′, because [τ, τ′] ⊆ j′+ and, from τ ∈ τ′⊖ I, we obtain τ ∈ j′+⊖ I.
Finally, from τ ∈ j′ and τ ∈ j′+⊖ I, we obtain, τ ∈ j′∩(j′+⊖ I). Since τ ∈ i′⊖ I,
we obtain τ ∈ j′ ∩(j′+⊖ I)∩(i′⊖ I) and, by j′+ ∩ i′ /= ∅ and Lemma A.1.1,
τ ∈ j′∩((j′+∩ i′)⊖ I). It follows that τ is also a member of⋃i∈Z(m,ω), j∈J i j∩
((j+∩ i)⊖ I) with Ji the set of all left-adjacent or overlapping intervals for
some i ∈Z(m,ω).
We proceed with showing inclusion ⊇. Let τ ∈ j′ ∩((j′+ ∩ i′)⊖ I) for one
possible pairing of i′ ∈Z(m,ω) and j′ ∈ Ji with Ji defined as previously. That
is, τ ∈ j and τ ∈ (j′+ ∩ i′)⊖ I. It follows that there exists a τ′ ∈ j′+ ∩ i′ with
τ′ ∈ τ⊕ I, i.e., τ′ − τ ∈ I. Since ℓ(I) /= 0 and 0 /∈ I, τ′ > τ. From τ′ ∈ i′ and
τ′− τ ∈ I, we deduce that there is a τ′ at which ω is satisfied with τ′− τ ∈ I.
Moreover, from τ′ ∈ j′+, τ ∈ j′, and τ′ > τ, we deduce that there is a non-empty
[τ, τ′) ⊆ j′ during which χ is satisfied. Therefore, χUIω is satisfied at τ and,
by definition of the satisfaction span, τ ∈ Y(m, χUIω).
By showing inclusion in both directions, we have shown the sets of time
points to be equal.

• Induction step:ψ = χUIω and ℓ(I) = 0. Assume that the induction hypothesis
from the previous step holds. We first show:

Y(m, χUIω) ⊆ ⋃
i∈Z(m,ω)

i ∪⋃
j∈J i

j∩((j+∩ i)⊖ I)

Let τ ∈ Y(m, χUIω). By definition of the satisfaction span, χUIω is satisfied
at τ, which, by the semantics, means that there is a time point τ′ with τ′−τ ∈
I, where ω is satisfied. Observe that by including 0 ∈ I, thereby allowing
τ′− τ = 0, the semantics imply a disjunction. If τ′− τ > 0, it can be shown as
before that τ ∈ j′∩((j′+∩ i′)⊖ I) for some pairing of i′ ∈ Y(m,ω) and j′ ∈ Ji
with Ji defined as previously.
If τ′ − τ = 0, it follows that [τ, τ′) is empty and, since τ = τ′, τ ∈ i′ with
i′ defined as previously. Accounting for both cases of the disjunction, we
obtain τ ∈ i′ ∪(j′ ∩((j′+ ∩ i′)⊖ I)). It follows that τ is also a member of
⋃i∈Z(m,ω) i∪(⋃ j∈J i j

′∩((j′+∩ i′)⊖ I)).
We proceed with inclusion ⊇. Let τ ∈ i′ ∪ (j′ ∩ ((j′+ ∩ i′)⊖ I)) for some
pairing of i′ ∈Z(m,ω) and j′ ∈ Ji with Ji defined as previously. It follows that
τ ∈ i′∨ τ ∈ j′∩((j′+∩ i′)⊖ I). For the left disjunct, since 0 ∈ I, there exists τ′
such that τ′−τ ∈ I, i.e., τ′ = τ and where [τ, τ′) is empty.Therefore, τ satisfies
until. For the right disjunct, we can deduce τ ∈ Y(m, χUIω) as before. We
have shown that in each case τ is included in the satisfaction span of until.

A.3 proofs 133

By showing inclusion in both directions, we have shown the sets of time
points to be equal.

• Induction step: ψ = χSIω and ℓ(I) /= 0.The step proceeds analogously to until
and relies on the same induction hypothesis. We first show:

Y(m, χSIω) ⊆ ⋃
i∈Z(m,ω), j∈J i

j∩((+ j∩ i)⊕ I)

Let τ ∈Y(m, χSIω). By the semantics, there exists a τ′ such that ω is satisfied.
Therefore, τ′ is in some i′ ∈ Y(m,ω) and, by the induction hypothesis, in
Z(m,ω) too. Moreover, τ′ satisfies the timing constraint I of since, thus
τ− τ′ ∈ I. It follows that there exists a t ∈ I such that τ− τ′ = t, thus, τ = τ′+ t.
Therefore, we obtain that τ ∈ τ′⊕ I and, in turn, τ ∈ i′⊕ I.
Additionally, by the semantics, there exists an interval (τ′, τ] for which χ
is satisfied. Observe that (τ′, τ] can’t be empty: From τ ∈ τ′⊕ I, it follows
that τ′ ∈ τ⊖ I and, since ℓ(I) /= 0 (and by I ⊆ R+

0 , 0 /∈ I), τ > τ′. Therefore,
there exists some j′ ∈Y(m, χ) and, by the induction hypothesis, j′ ∈Z(m, χ),
with (τ′, τ] ⊆ j′. The interval j′ is either overlapping or right-adjacent to
the i′ which contains τ′, because [τ′, τ] ⊆ + j′ and, from τ′ ∈ τ⊖ I, we obtain
τ ∈ + j′⊕ I. Finally, from τ ∈ j′ and τ ∈ + j′⊕ I, we obtain, τ ∈ j′ ∩(+ j′⊕ I)
and since τ ∈ i′⊕ I, τ ∈ j′∩((+ j′∩ i′)⊕ I). It follows that τ is also a member
of ⋃i∈Z(m,ω), j∈J i j

′ ∩((+ j′ ∩ i′)⊕ I) with Ji the set of all right-adjacent or
overlapping intervals for some i ∈Z(m,ω).
We proceed with the inclusion ⊇. Let τ ∈ j′∩((+ j′∩ i′)⊕ I) for one possible
pairing of i′ ∈ Z(m,ω) and j′ ∈ Ji with Ji defined as previously. The time
point τ is simultaneously in j′ and (+ j′∩ i′)⊕ I. It follows that there exists
a τ′ ∈ + j′ ∩ i′ with τ′ ∈ τ⊕ I, i.e., τ− τ′ ∈ I. Since ℓ(I) /= 0 and 0 /∈ I, τ > τ′.
From τ′ ∈ i′ and τ− τ′ ∈ I, we deduce that at τ there is a τ′ within the timing
constraint I at which ω is satisfied. Moreover, from τ′ ∈ + j′, τ ∈ j′, and τ > τ′,
we deduce that there is a non-empty (τ′, τ] ⊆ j′ during which χ is satisfied.
Therefore, χSIω is satisfied at τ and, by definition of the satisfaction span,
τ ∈ Y(m, χSIω).
By showing inclusion in both directions, we have shown the sets of time
points to be equal.

• Induction step: ψ = χSIω and ℓ(IU) = 0. Equality can be shown analogously
to the corresponding step for until.

From the base case and induction steps, it follows thatTheorem 3.2.1 holds.

a.3.2 Theorem 3.3.1: definite relations imply satisfaction relation over history

Following is the proof forTheorem 3.3.1, that is, given anMTGCψ over a pattern
n, a sequence of RTMH instances hHτD with D ∈ N+ the last index, for all i ∈
[1,D]∩N+, ifm amatch for n inH[τ i] and τ ∈ [0, τi], then for all k ∈ [i ,D]∩N+,
(i) if (H[τ i],m, τ) ⊧d ψ, then (H[τk],m, τ) ⊧ ψ, and (ii) if (H[τ i],m, τ) ⊧dF ψ,
then (H[τk],m, τ) /⊧ ψ.

134 technical supplement

Proof. By definition of the RTMH, a match m in H[τ i] will be structurally
present in all H[τk] with k ∈ [i ,D]∩N

+—what may change (once) in future
versions of H[τ i] is the lifespan of m, i.e., if the dts of all matched elements is
∞ and one of these elements is updated to a value less than∞; even then, this
change will not affect the lifespan of m in the period [0, τi], that is, in H[τ i],
the observation on whether m is present in λm ∩[0, τi] will never be refuted.
The proof proceeds by mutual structural induction over ψ. In the base case,

we show the theorem to be true for the MTGL operator true. We omit the
straightforward step for conjunction.

• Base case: true.

We begin with the definite satisfaction. We assume (H[τ i],m, τ) ⊧d true
and show that (H[τk],m, τ) ⊧ true for an arbitrary k ∈ [i ,D]∩N+. By the
semantics of MTGL, true is always satisfied. Therefore, m in H[τk] also
satisfies true at τ. We have shown that the implication is true.

We proceed with the definite falsification. Based on the semantics of the
definite falsification relation, a matchm never falsifies true.Therefore, the an-
tecedent (H[τ i],m, τ)⊧dF true is false, making the consequent (H[τk],m, τ) /⊧
true true.

• Induction step: ψ = ¬χ.
We begin with the definite satisfaction. Assume that (H[τ i],m, τ) ⊧dF χ⇒
(H[τk],m, τ) /⊧ χ for an arbitrary k ∈ [i ,D]∩N+. By the semantics of nega-
tion and the definite relations, (H[τ i],m, τ) ⊧dF χ⇔ (H[τ i],m, τ) ⊧d ¬χ.
Similarly, (H[τk],m, τ) /⊧ χ⇔(H[τk],m, τ) ⊧ ¬χ. Therefore, it also holds
that (H[τ i],m, τ) ⊧d ¬χ⇒(H[τk],m, τ) ⊧ ¬χ.
We proceed with the definite falsification. Assume that (H[τ i],m, τ) ⊧d χ⇒
(H[τk],m, τ) ⊧ χ. Analogously to the definite satisfaction, (H[τ i],m, τ) ⊧d
χ⇔(H[τ i],m, τ) ⊧dF ¬χ and (H[τk],m, τ) ⊧ χ⇔(H[τk],m, τ) /⊧ ¬χ. There-
fore, (H[τ i],m, τ) ⊧dF ¬χ⇒(H[τk],m, τ) /⊧ ¬χ.

• Induction step: ψ = ∃(n̂, χ).
Let the induction hypothesis be (H[τ i], m̂, τ) ⊧d χ⇒(H[τk], m̂, τ) ⊧ χ and
(H[τ i], m̂, τ) ⊧dF χ⇒(H[τk], m̂, τ) /⊧ χ, where m̂ is a match for the pattern
n̂ and k an arbitrary index in [i ,D]∩N+.

We begin with the definite satisfaction. We assume (H[τ i],m, τ) ⊧d ∃(n̂, χ)
and show this implies (H[τk],m, τ) ⊧ ∃(n̂, χ). Since (H[τ i],m, τ) ⊧d ∃(n̂, χ),
there exists matchesm and m̂ such that m̂ is compatible withm and τ ∈ λm∩
λm̂. The matches m, m̂ will be structurally present and m̂ will be compatible
with m in all future versions of H[τ i]. Moreover, there will be no changes in
λm , λm̂ for the period [0, τ]. Also, by the induction hypothesis, m̂ satisfies
χ at τ. Therefore, by the semantics of the satisfaction relation for exists,
(H[τk],m, τ) ⊧ ∃(n̂, χ). We have shown that the implication is true.

We proceed with the definite falsification. We assume that (H[τ i],m, τ) ⊧dF
∃(n̂, χ) and show that this implies (H[τk],m, τ) /⊧∃(n̂, χ). Since (H[τ i],m, τ)
⊧dF ∃(n̂, χ), (i) either there exists no m̂ in H[τ i] such that m̂ is compatible

A.3 proofs 135

withm, or (ii) there exists m̂ compatible withm, but τ /∈ λm∩λm̂, or (iii) there
exists m̂ compatible with m with τ ∈ λm ∩ λm̂ but m̂ definitely falsifies χ at τ.
If (i) is true, it will be true in all future versions of H[τ i], as matches cannot
be found retrospectively. If (ii) is true, the lifespan of λm̂ in the period [0, τi]
will not change in all future versions of H[τ i]. Finally, if (iii) is true, we know
from the induction hypothesis that (m̂, τ) /⊧ χ also over H[τk]. Therefore,
in any case, (H[τk],m, τ) /⊧ ∃(n̂, χ). We have shown that the implication is
true.

• Induction step: ψ = χUIω.
We begin with the definite satisfaction. Induction hypothesis: (H[τ i],m, τ)
⊧d χ⇒(H[τk],m, τ) ⊧ χ and (H[τ i],m, τ) ⊧d ω⇒(H[τk],m, τ) ⊧ ω with k
an arbitrary index in [i ,D]∩N+.

We assume (H[τ i],m, τ) ⊧d χUIω and show this implies (H[τk],m, τ) ⊧
χUIω. Since (H[τ i],m, τ) ⊧d χUIω, there exists τ such that τ′ − τ ∈ I and
(H[τ i],m, τ′) ⊧d ω, and for all τ′′ ∈ [τ, τ′) (H[τ i],m, τ′′) ⊧d χ. The decisions
for the time point τ′ and for all time points τ′′ either concern a match
or not: if they do concern a match, then they are confined to [0, τi] and
remain unaltered throughout the history; if they do not concern a match,
e.g., they concern true or ¬true, then they again remain unaltered.Therefore,
also over H[τk] it will hold that at τ

′ (H[τk],m, τ′) ⊧ ω, and for every τ′′
(H[τk],m, τ′′) ⊧ χ. Thus, by the semantics of the satisfaction relation for
until, (H[τk],m, τ) ⊧ χUIω. We have shown that the implication is true.

We proceed with the definite falsification. Let the induction hypothesis be
(H[τ i],m, τ)⊧dF χ⇒(H[τk],m, τ) /⊧ χ and (H[τ i],m, τ)⊧dF ω⇒(H[τk],m, τ)
/⊧ ω.
We assume (H[τ i],m, τ) ⊧dF χUIω and show that this implies (H[τk],m, τ)
/⊧ χUIω. Since (H[τ i],m, τ) ⊧dF χUIω, for all τ′ such that τ′− τ ∈ I, either (i)
(H[τ i],m, τ′) ⊧dF ω or (ii) there exists τ′′ ∈ [τ, τ′) such that (H[τ i],m, τ′′) ⊧d
χ. Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
definite satisfaction, if the decisions for all τ′ and at τ′′ concern a match,
they will remain unaltered, and so will they if they do not concern a match.
Therefore, the case will also hold overH[τk].Therefore, (H[τk],m, τ) /⊧ χUIω.
We have shown that the implication is true.

• Induction step: ψ = χSIω.
The proof proceeds analogously to until. We begin with the definite satisfac-
tion. Let the induction hypothesis be (H[τ i],m, τ) ⊧d χ⇒(H[τk],m, τ) ⊧ χ
and (H[τ i],m, τ) ⊧d ω⇒ (H[τk],m, τ) ⊧ ω with k an arbitrary index in
[i ,D]∩N+.

We assume (H[τ i],m, τ) ⊧d χSIω and show this implies (H[τk],m, τ) ⊧
χSIω. Since (H[τ i],m, τ) ⊧d χSIω, there exists τ′ such that τ − τ′ ∈ I and
(H[τ i],m, τ′) ⊧d ω, and for all τ′′ ∈ (τ′, τ] (H[τ i],m, τ′′) ⊧d χ. The decisions
for the time point τ′ and all time points τ′′ either concern a match or not:
if they do concern a match, then they are confined to [0, τi] and remain
unaltered throughout the history; if they do not concern a match, then they
will again remain unaltered. Therefore, also over H[τk] it will hold that at τ

′

136 technical supplement

(H[τk],m, τ′) ⊧ ω, and for all τ′′ (H[τk],m, τ′′) ⊧ χ. Thus by the semantics
of the satisfaction relation for since, (H[τk],m, τ) ⊧ χSIω. We have shown
that the implication is true.

We proceed with the definite falsification. Let the induction hypothesis be
(H[τ i],m, τ)⊧dF χ⇒(H[τk],m, τ) /⊧ χ and (H[τ i],m, τ)⊧dF ω⇒(H[τk],m, τ)
/⊧ ω.
We assume (H[τ i],m, τ) ⊧dF χSIω and show that this implies (H[τk],m, τ)
/⊧ χSIω. Since (H[τ i],m, τ) ⊧dF χSIω, for all τ′ such that τ− τ′ ∈ I, either (i)
(H[τ i],m, τ′) ⊧dF ω or (ii) there exists τ′′ ∈ (τ′, τ] such that (H[τ i],m, τ′′) ⊧d
χ. Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
definite satisfaction, if the decisions for all τ′ and at τ′′ concern a match,
they will remain unaltered, and so will they if they do not concern a match.
Therefore, the case will also hold overH[τk]. Therefore, (H[τk],m, τ) /⊧ χSIω.
We have shown that the implication is true.

From the base case and induction steps, it follows thatTheorem 3.3.1 holds.

a.3.3 Theorem 3.3.2: definite relations are equivalent to satisfaction relation over
certain period of history

Following is the proof forTheorem 3.3.2, that is, given anMTGCψ over a pattern
n, the non-definitenessw window of ψ, and a sequence of RTMH instances hHτD
with D ∈N+ the last index, for all i ∈ [1,D]∩N+, if m a match for n in H[τ i]
and τ ∈ [0, τi −w], then for all k ∈ [i ,D]∩N+, (i) (H[τ i],m, τ) ⊧d ψ if and only
if (H[τk],m, τ) ⊧ ψ, and (ii) (H[τ i],m, τ) ⊧dF ψ if and only if (H[τk],m, τ) /⊧ ψ.
By definition of the RTMH, a match m in H[τ i] will be structurally present

in all H[τk] with k ∈ [i ,D]∩N
+—what may change (once) in future versions of

H[τ i] is the lifespan ofm, i.e., if the dts of all matched elements is∞ and one of
these elements is updated to a value less than∞; even then, this change will not
affect the lifespan of m in the period [0, τi], that is, in H[τ i], the observation
on whether m is present in λm ∩[0, τi] will never be refuted.

Proof. The direction⇒ of the equivalence has been shown by the more general
Theorem 3.3.1, which concerned an arbitrary τ. We therefore focus on direction
⇐ of the equivalence. As m is present in H[τ i], its lifespan λ

m in the period
[0, τi] will remain unchanged in subsequent versions of H[τ i]. In the following,
the non-definiteness window w is computed according to Definition 3.3.2.
The proof proceeds by mutual structural induction over ψ. In the base case,

we show the theorem to be true for the MTGL operator true. We omit the
straightforward step for conjunction.

• Base case: true.

We begin with the satisfaction. We assume (H[τk],m, τ) ⊧ true for an ar-
bitrary k ∈ [i ,D]∩N+ and τ ∈ [0, τi −w] with wnd = 0, and show that this
implies (H[τ i],m, τ) ⊧d true. As true is always satisfied,m in H[τ i] definitely
satisfies true at τ. Hence, the implication to be true.

A.3 proofs 137

We proceed with the falsification. Based on the semantics of satisfaction, a
matchm never satisfies /⊧ true.Therefore, the antecedent (H[τk],m, τ) /⊧ true
is false, making the consequent (H[τ i],m, τ) ⊧dF true true.

• Induction step: ψ = ¬χ.
We begin with the satisfaction. Let (H[τk],m, τ) /⊧ χ ⇒ (H[τ i],m, τ) ⊧dF
χ for an arbitrary k ∈ [i ,D] ∩N+ and τ ∈ [0, τi −w] with w(¬χ) = w(χ).
By the semantics of negation and the satisfaction relation, (H[τk],m, τ) /⊧
χ⇔(H[τk]m, τ) ⊧ ¬χ. Similarly, (H[τ i],m, τ) ⊧dF χ⇔(H[τ i],m, τ) ⊧d ¬χ.
Therefore, it also holds that (H[τk],m, τ) ⊧ ¬χ⇒(H[τ i],m, τ) ⊧d ¬χ.
We proceed with the falsification. Assume (H[τk],m, τ) ⊧ χ⇒ (H[τ i],m, τ)
⊧d χ. Analogously to the satisfaction, (H[τk],m, τ) ⊧ χ⇔(H[τ i],m, τ) /⊧¬χ
and (H[τk],m, τ) ⊧d χ⇔ (H[τk],m, τ) ⊧dF ¬χ. Therefore, (H[τk],m, τ) /⊧
¬χ⇒(H[τ i],m, τ) ⊧dF ¬χ.

• Induction step: ψ = ∃(n̂, χ).
Let the induction hypothesis be (H[τk], m̂, τ) ⊧ χ⇒(H[τ i], m̂, τ) ⊧d χ and
(H[τk], m̂, τ) /⊧ χ⇒(H[τ i], m̂, τ) ⊧dF χ, where m̂ is a match for the pattern n̂,
k an arbitrary index in [i ,D]∩N+, and τ ∈ [0, τi −w]. The non-definiteness
window w is given by w(∃(n̂, χ)) =w(χ).
We begin with the satisfaction. We assume that (H[τk],m, τ) ⊧ ∃(n̂, χ) and
show that this implies (H[τ i],m, τ) ⊧d ∃(n̂, χ). Since (H[τk],m, τ) ⊧∃(n̂, χ),
there exists matchesm and m̂ inH[τk] such that m̂ is compatible withm and
τ ∈ λm∩ λm̂. The matchm is present inH[τ i] and, according to the induction
hypothesis, the match m̂ is also present to m in H[τ i]. As the matches are
structurally the same, m̂ is also compatible with m in H[τ i]. Moreover, as
there are no changes in λm , λm̂ for the period [0, τi], τ ∈ λm ∩ λm̂ over H[τ i].
We also know that τ ≤ τi and, by the induction hypothesis, that m̂ satisfies
χ at τ. Therefore, by the semantics of the definite satisfaction relation for
exists, (H[τ i],m, τ) ⊧d ∃(n̂, χ). We have shown that the implication is true.

Weproceedwith the falsification.We assume that (H[τk],m, τ) /⊧∃(n̂, χ) and
show that this implies (H[τ i],m, τ)⊧dF ∃(n̂, χ). Since (H[τk],m, τ) /⊧∃(n̂, χ),
(i) either there exists no m̂ in H[τk] such that m̂ is compatible with m, or
(ii) there exists m̂ compatible with m, but τ /∈ λm ∩ λm̂, or (iii) there exists
m̂ compatible with m with τ ∈ λm ∩ λm̂ but m̂ falsifies χ at τ. If (i) is true,
it will be true in all future versions of H[τ i], as matches cannot be found
retrospectively. If (ii) is true, the lifespan of λm̂ in the period [0, τi] will not
change in all future versions of H[τ i]. Finally, if (iii) is true, we know from
the induction hypothesis that (m̂, τ) ⊧dF χ also over H[τ i] and that τ ≤ τi .
Therefore, in any case, (H[τ i],m, τ) ⊧dF ∃(n̂, χ). We have shown that the
implication is true.

• Induction step: ψ = χUIω.

We beginwith the satisfaction. Let the induction hypothesis be (H[τk],m, τ)⊧
χ⇒ (H[τ i],m, τ) ⊧d χ and (H[τk],m, τ) ⊧ ω⇒ (H[τ i],m, τ) ⊧d ω with k

138 technical supplement

an arbitrary index in [i ,D]∩N+ and τ ∈ [0, τi −w]. The non-definiteness
window w is given by max(w(χ),w(ω))+ r(I).
We assume (H[τk],m, τ) ⊧ χUIω and show (H[τ i],m, τ) ⊧d χUIω. Since
(H[τk],m, τ) ⊧ χUIω, there exists τ′ such that τ′− τ ∈ I and (H[τk],m, τ′) ⊧
ω, and for all τ′′ ∈ [τ, τ′) (H[τk],m, τ′′) ⊧ χ. From τ ∈ [0, τi −w] and τ′ ∈
[τ+ ℓ(I), τ+ r(I)], it follows that τ′ ≤ τi −max(w(χ),w(ω)). Based on this
and the induction hypothesis, (H[τ i],m, τ′) ⊧d ω. Moreover, as τ′ stems
from a period outside the non-definiteness window of ω, the decision at τ′,
whether it concerns a match or not, will remain unaltered once made.

The decision at τ′ as well as the preceding period [τ, τ′) are also outside the
non-definiteness window of χ. Thus, all τ′′ ∈ [τ, τ′) stem from a period cov-
ered by H[τ i], and decisions for χmade in this period are definite. Therefore,
for all [τ+ ℓ(I), τ+ τ′) (H[τ i],m, τ′′) ⊧d χ, and, by the definite semantics,
(H[τ i],m, τ) ⊧d χUIω. We have shown that the implication is true.

We proceed with the falsification. Let the induction hypothesis be that
(H[τk],m, τ) /⊧ χ⇒(H[τ i],m, τ)⊧dF χ and (H[τk],m, τ) /⊧ω⇒(H[τ i],m, τ)
⊧dF ω.
We assume (H[τk],m, τ) /⊧ χUIω and show (H[τ i],m, τ) ⊧dF χUIω. Since
(H[τk],m, τ) /⊧ χUIω, it holds that for all τ′ such that τ′ − τ ∈ I either (i)
(H[τk],m, τ′) /⊧ ω or (ii) there exists τ′′ ∈ [τ, τ′) such that (H[τk],m, τ′′) ⊧ χ.
Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the satis-
faction, the decisions for all τ′ and at τ′′ stem from a period that is covered by
H[τ i], and decisionsmade in this period regarding χ andω are definite.There-
fore, the case will also hold overH[τ i]. Therefore, (H[τ i],m, τ) ⊧dF χUIω. We
have shown that the implication is true.

• Induction step: ψ = χSIω.
We beginwith the satisfaction. Let the induction hypothesis be (H[τk],m, τ)⊧
χ⇒ (H[τ i],m, τ) ⊧d χ and (H[τk],m, τ) ⊧ ω⇒ (H[τ i],m, τ) ⊧d ω with k
an arbitrary index in [i ,D]∩N+ and τ ∈ [0, τi −w]. The non-definiteness
window w is given by max(w(χ),w(ω)).
We assume (H[τk],m, τ) ⊧ χSIω and show (H[τ i],m, τ) ⊧d χSIω. Since
(H[τk],m, τ)⊧ χSIω, there exists τ′ such that τ−τ′ ∈ I and (H[τk],m, τ′)⊧ω,
and for all τ′′ ∈ (τ′, τ] (H[τk],m, τ′′) ⊧ χ. From τ ∈ [0, τi −w] and τ′ ∈
[τ− r(I), τ− ℓ(I)], it follows that τ′ ≤ τi −max(w(χ),w(ω)). Hence, the
decision at τ′ can already be made over H[τ i], and, moreover, as τ

′ stems
from a period outside the non-definiteness window of ω, the decision at
τ′, whether it concerns a match or not, will remain unaltered once made.
Therefore, (H[τ i],m, τ′) ⊧d ω. The decision at τ′ as well as the succeeding
period (τ′, τ] is also outside the non-definiteness window of χ. Thus, all
τ′′ ∈ (τ′, τ] stem from a period covered by H[τ i], and decisions for χ made
in this period are definite. Therefore, for all τ′′ ∈ (τ′, τ] (H[τ i],m, τ′′) ⊧d χ,
and, by the definite semantics, (H[τ i],m, τ) ⊧d χSIω. We have shown that
the implication is true.

A.3 proofs 139

We proceed with the falsification. Let the induction hypothesis be that
(H[τk],m, τ) /⊧ χ⇒(H[τ i],m, τ)⊧dF χ and (H[τk],m, τ) /⊧ω⇒(H[τ i],m, τ)
⊧dF ω.
We assume (H[τk],m, τ) /⊧ χSIω and show (H[τ i],m, τ) ⊧dF χSIω. Since
(H[τk],m, τ) /⊧ χSIω, it holds that for all τ′ such that τ − τ′ ∈ I either (i)
(H[τk],m, τ′) /⊧ ω or (ii) there exists τ′′ ∈ (τ′, τ] such that (H[τk],m, τ′′) ⊧ χ.
Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the sat-
isfaction, the decisions for all τ′ and at τ′′ stem from a period that is covered
by H[τ i], and decisions made in this period regarding χ and ω are definite.
Therefore, the case will also hold overH[τ i].Therefore, (H[τ i],m, τ)⊧dF χSIω.
We have shown that the implication is true.

From the base case and induction steps, it follows thatTheorem 3.3.2 holds.

a.3.4 Theorem 3.3.3: equality of definite spans and definite computations for
satisfaction and falsification

Following is the proof for Theorem 3.3.3, i.e., given a match m over an RTMH

H[τ] and an MTGC ψ, the definite satisfaction span Yd of m for ψ over H[τ] is
given by the definite satisfaction computation Zd of m for ψ over H[τ] in Defi-
nition 3.3.3, that is, Yd(m,ψ) =Zd(m,ψ). Moreover, the definite falsification
span F of m for ψ over H[τ] is given by the definite falsification computation F
of m for ψ over H[τ] in Definition 3.3.3, that is, F(m,ψ) = F(m,ψ).

Proof. The proof for the definite satisfaction span Zd proceeds almost identi-
cally to the proof in Theorem 3.2.1 for Z, i.e., by structural induction over ψ,
and therefore omitted. For true, conjunction, exists, until, and since in Defini-
tion 3.3.3, inclusion can be shown in both directions—the proof for the negation
relies on a reasoning analogous to the one presented below for negation for the
definite falsification span.
The proof for the definite falsification F is based on the application of F =

R∖(Zd ⊎X) for each MTGL operator—which follows from R = Yd ⊎F⊎X.
The unknown span X for true is X = ∅, whereas for exists, by definition of the
RTMH H[τ], it is X = (τ,∞). If F is known, it can be used to compute Zd ⊎X.

• ψ = true: From Equation 3.9 in Definition 3.3.3, we have Zd(m, true) = R,
therefore F(m, true) = ∅.

• ψ = ¬χ: It holds that

F(m,¬χ) =Zd(m,¬χ)⊎X(m,¬χ)

and

Zd(m, χ) =Zd(m,¬χ)⊎X(m,¬χ)

Therefore,

F(m,¬χ) =Zd(m, χ) =Zd(m, χ)

140 technical supplement

• ψ = χ∧ω: Let each time point that does not definitely falsify the MTGC a
that χ encloses to be assumed to satisfy the a. In practice, this includes all
time points in Zd(m, χ)⊎X(m, χ) for a. Subtracting this maximal satisfac-
tion span from the time domainR yields the set of time points that definitely
falsify χ. Let the satisfaction span of ω be defined analogously. If the satisfac-
tion span of conjunction is computed based on these maximal satisfaction
spans of χ and ω, i.e., by (Zd(m, χ)⊎X(m, χ))∩ (Zd(m,ω)⊎X(m,ω)),
the definite falsification span of conjunction can be computed analogously.

F(m, χ∧ω) =R∖((Zd(m, χ)⊎X(m, χ))∩(Zd(m,ω)⊎X(m,ω)))
=R∖((R∖F(m, χ))∩(R∖F(m,ω)))
= F(m, χ)∪F(m,ω)

• ψ = ∃(n̂, χ): Let τ be the time point of the RTMH H[τ]. As Z(m,∃(n̂, χ)) is
known and X(m,∃(n̂, χ)) = (τ,∞), to obtain the falsification computation,
we can directly solve R∖(Zd ⊎X).

F(m,∃(n̂, χ)) =R∖(Zd(m,∃(n̂, χ))∪(τ,∞))
= (R∖(τ,∞))∩(R∖Zd(m,∃(n̂, χ)))
= (−∞, τ]∩(R∖Zd(m,∃(n̂, χ)))

• ψ = χUIω and 0 /∈ I: The computation for until relies on the reasoning ex-
plained in the case of conjunction.The satisfaction span of until is computed
based on the maximal satisfaction spans of ω, i.e., Zd(m,ω)⊎X(m,ω), and
χ, that is, JXi is obtained by Z

d(m,ω)⊎X(m,ω) and Zd(m, χ)⊎X(m, χ),
thus the until satisfaction span is similarly maximal. Therefore, complement-
ing this maximal satisfaction span yields all time points that definitely falsify
until. Therefore, we have:

F(m, χUIω) =R∖
⎛
⎝ ⋃
i∈Zd(m,ω)∪X(m,ω), j∈JXi

j∩((j+∩ i)⊖ I)
⎞
⎠

• ψ = χUIω and 0 ∈ I: The reasoning is similar to the case where 0 /∈ I.

• ψ = χSIω and 0 /∈ I: The case proceeds analogously to the corresponding case
of until.

• ψ = χSIω and 0 ∈ I: The case proceeds analogously to the corresponding case
of until.

By showing that Yd(m,ψ) =Zd(m,ψ) and the equations for F(m,ψ), we have
shown that theorem holds.

a.3.5 Lemma 4.1.1: Equality of satisfaction span set and TGDN result

Following is the proof for Lemma 4.1.1, which states that, given an RTMH H[τ],
a context pattern n, an MTGC ψ over n, and a TGDN g characterized by the
output of C(n,ψ), the satisfaction span set Σψ in H[τ] is equal to the result Gψ
of g, that is:

Σψ(H[τ]) = Gψ(H[τ])

A.3 proofs 141

Proof. We show the lemma by structural induction over ψ and the TGDNs that
operation C(n,ψ) constructs. For each ψ, we obtain g based on C and show
that the result yielded by the TGDN g is equal to Σψ . The proof refers to items
from Section 4.1.3. In the base case, we show the theorem to be true for the
MTGL operator true to which all MTGCs reduce. We omit the straightforward
step for since.

• Base case: true.

We first show inclusion ⊆. Let t be a tuple (m,Z(m, true)) in Σtrue for the
context pattern n and the MTGC true with m a match for n. In this case,
Z(m, true) = R. The TGDN g obtained by C(n, true) consists of a single
BMR r whose LHS is the same as n. Thus, r is applied at least for m and a
marking node a for m is created. According to item (vi), the duration of
the marking node a.d isR, thus equal to Z(m, true). The TGDN result Gtrue
contains the result of the operation obt for all marking nodes, thus also for
a which obtains m. This m is paired with a.d. Therefore, there is a tuple t′
in G such that t′ = t. We have shown inclusion ⊆.
We proceed with inclusion ⊇. As previously mentioned, the constructed g
consists of a single rule r whose LHS is n. Let (obt(a), a.d) be a tuple in
G with a the marking node created by r for a match m for n, and a.d =R
the duration of the marking node. By definition, the satisfaction span set Σ
contains all matches for n paired with their satisfaction span, therefore also
m. The satisfaction span of this match is R (see Equation 3.2), i.e., it is equal
to a.d. We have shown inclusion ⊇.

• Induction step: ψ = ¬χ.
We first show inclusion ⊆. Assume that Σ χ = Gχ. Let t ∈ Σψ such that t =
(m,Z(m,¬χ)). The same match m must be also included in Σ χ, i.e., there
exists a tuple t′ = (m,Z(m, χ)). Let g χ be the TGDN constructed by C(n, χ).
By the induction hypothesis, there exists a tuple t′′ = (obt(a), a.d) in Gχ
such that t′′ = t′, i.e., obt(a) = m and a.d = Z(m, χ). Let g be the TGDN
constructed by C(n,¬χ), which consists of a sub-tree corresponding to g
plus the rules added by the step for negation in Section 4.1.3, that is: a multi-
rule µ whose LHS is the pattern

˜
n χ, a kernel rule k whose LHS is n, and the

dependencies (µ, r χ) and (k, µ), where r χ is the root of g. The existence of
t′′ implies that r χ is applied at least once for m and creates a marking node.
Therefore, at least one copy of µ is created for

˜
m χ. This copy is glued in the

kernel rule k. The LHS of the rule k is n therefore the rule is also applied
for m and factors in its computation of the duration a.d of the marking
node v the copy of µ for m. The duration a.d is given by R∖ a.d. As a.d
is equal to Z(m, χ), this computation is effectively equal to R∖Z(m, χ),
which, according to Theorem 3.2.1, is equal to Z(m,¬χ). Therefore, there
exists a tuple t′′′ in Gψ such that t′′′ = t. We have shown inclusion ⊆.
We now proceed with inclusion ⊇. Let g be the TGDN defined above. Let
(obt(a), a.d) be a tuple u in Gψ with a a marking node created by the root
k of g. The LHS of k is n, therefore obt(a) yields a matchm for n. As shown
before, the duration a.d is equal to Z(m,¬χ). The satisfaction span set Σψ
includes all matches for n paired with their satisfaction span Z. Thus, Σψ

142 technical supplement

also includes a match m. Therefore, there exists a tuple u′ ∈ Σψ with u′ = u.
We have shown inclusion ⊆.

• Induction step: ψ = χ∧ω.
We first show inclusion ⊆. Assume that Σ χ = Gχ and Σω = Gω. Let t be a tuple
(m,Z(m,ψ)) in Σ χ∧ω with m a match for the context pattern n. The same
match m must be also included in Σ χ and Σω, as χ and ω are also MTGCs
over n. Therefore, there exists a tuple t′χ = (m,Z(m, χ)) ∈ Σ χ and a tuple
t′ω = (m,Z(m,ω)) ∈ Σω. Let g χ be the TGDN constructed by C(n, χ) and
gω be the TGDN constructed by C(n,ω). By the induction hypothesis, there
exists a tuple t′′χ = (obt(a χ), a χ .d) in Gχ such that t′′χ = t′χ, i.e., obt(a χ) =m
and a χ .d = Z(m, χ). Similarly, there exists a tuple t′′ω = (obt(aω), aω .d) in
Gω such that t′′ω = t′ω. Let g be the TGDN constructed by C(n, χUIω), which
consists of the sub-trees corresponding to g χ and gω plus the rule added by
item (iii), that is: a BMR r whose LHS is

˜
n χ,ω and whose dependencies are

both r χ, i.e., the root of g χ, and rω, i.e., the root of gω. The existence of t′′χ
and t′′ω imply that both of these rules were applied and created a marking
node. Hence, since a match m for n exists and so do the marking nodes
for r χ and rω, r is applied at least once for m and creates a marking node
a. The duration of the marking node is computed by Equation 3.4, based
on the duration a χ and aω. According toTheorem 3.2.1, these are equal to
Z(m, χ) and Z(m,ω), respectively; thus, the computation by r is equal to
Z(m, χ∧ω). Therefore, there exists a tuple t′′′ in Gψ such that t′′′ = t. We
have shown inclusion ⊆.
We now proceed with inclusion ⊇. Let g be the TGDN defined above. Let
(obt(a), a.d) be a tuple u in Gψ with a a marking node created by the root
r of g. The LHS of r is

˜
n χ,ω, therefore obt(a) yields a match m for n. As

shown before, the duration a.d is equal to Z(a, χ∧ω). The satisfaction span
set Σψ includes all matches for n paired with their satisfaction span Z. Thus,
Σψ also includes m. Therefore, there exists a tuple u′ ∈ Σψ with u′ = u. We
have shown inclusion ⊆.

• Induction step: ψ = ∃(n̂, χ).
We first show inclusion ⊆. Assume that, given the input (n̂, χ), C(n̂, χ)
produces a TGDN ĝ such that the satisfaction span set Σ χ for χ over n̂ is
given by the result Gχ of ĝ, i.e., Σ χ = Gχ. Let t be a tuple (m,Z(m,∃(n̂, χ)))
in Σψ with m a match for n. Then t′ is a tuple (m̂,Z(m̂, χ)) in Σ χ with m̂
compatible with m. By the induction hypothesis, there also exists a tuple
t′′ = (obt(â), â.d) in the result Gχ of ĝ with â the marking node created for
a match m̂ such that t′′ = t′, that is, â.d =Z(m̂, χ). This implies that the root
r χ of ĝ creates a marking node for m̂, where the LHS of r χ is n̂ extended
with the marking node created by the dependency of r χ.

Consider the TGDN g obtained by the operation C(n,∃(n̂, χ)). Before the
item in the operation Crec for exists is performed (see Definition 4.1.2), the
dependency r χ is obtained by performing Crec(n̂, χ). Notice that this opera-
tion effectively constructs ĝ and returns the root of ĝ, i.e., r χ. Then, the item
in C for exists is performed, and three rules are added: i) a BMR rn̂ (ii) a
multi-rule µ (iii) a kernel rule k; k is dependent on µ, µ is dependent on rn̂,

A.3 proofs 143

and rn̂ is dependent on r χ. The rule k is the root of g. The LHS of rn̂ is the ex-
tended pattern

˜
n̂r χ , i.e., the pattern n̂ extended by the marking node created

by r χ. As mentioned previously, Gχ of ĝ contains a tuple t′′ = t′, therefore
the rule r χ created a marking node for a match for the pattern n̂ extended by
the dependency of r χ. It follows that rn̂ also finds a match (both a match m̂
for n̂ and a marking node for r χ exists) and creates a marking node whose
duration is the intersection of all matched nodes, i.e., the duration is equal
to the temporal validity λm̂ ∩Z(m̂, χ) of m̂—see item (i).

After rn̂ has been applied, the dependency of µ is satisfied, so µ is applied.The
LHS of µ searches formarking nodes created by rn̂. At least one suchmarking
node exists (the one created for m̂ in the previous step) and therefore at
least one copy of µ is created. This copy is glued in the kernel rule k. The
multi-rule µ creates no marking nodes. The LHS of k is n. Since the tuple t
in Σψ contains a matchm for n, k is also applied and findsm. Moreover, this
match is compatible with m̂—as the elements in m̂ is a subset of the elements
in m. The duration of the marking node a created for m is computed as the
union of the duration of all marking nodes matched by µ, i.e.,:

⋃
m̂∈M̂

λm̂ ∩Z(m̂, χ)

with M̂ the set of all matches for n̂ compatible with m. According to The-
orem 3.2.1, this union is equal to Z(m,∃(n̂, χ)). Therefore, the tuple t′′′ =
(obt(a), a.d)) is included in the result Gψ obtained by the root of g, i.e., k.
As obt(a) =m and a.d = Z(m,∃(n̂, χ)), t′′′ = t. We have shown inclusion
⊆.
We now proceed with inclusion ⊇. Let g be the TGDN defined above. Let
(obt(a), a.d) be a tuple u in Gψ with a a marking node created by the root k
of g. The LHS of k is identical to n, therefore obt(a) yields a match m for n.
As shown before, the duration a.d is equal toZ(m,∃(n̂, χ)).The satisfaction
span set Σψ includes all matches for n paired with their satisfaction span Z.
Thus, Σψ also includes the match m. Therefore, there exists a tuple u′ ∈ Σψ
with u′ = u. We have shown inclusion ⊆.

• Induction step: ψ = χUIω.
We first show inclusion ⊆. Assume that Σ χ = Gχ and Σω = Gω. Let t ∈ Σψ
such that t = (m,Z(m, χUIω)) with m a match for n. The same match m
must be also included in Σ χ and Σω, as χ and ω are also MTGCs over
n. Therefore, there exists a tuple t′χ = (m,Z(m, χ)) ∈ Σ χ and a tuple t′ω =
(m,Z(m,ω)) ∈ Σω. Let g χ be the TGDN constructed by C(n, χ) and gω be
the TGDN constructed by C(n,ω). By the induction hypothesis, there exists
a tuple t′′χ = (obt(a χ), a χ .d) in Gχ such that t′′χ = t′χ, i.e., obt(a χ) =m and
a χ .d = Z(m, χ). Similarly, there exists a tuple t′′ω = (obt(aω), aω .d) in Gω
such that t′′ω = t′ω.
Let g be the TGDN constructed by C(n, χUIω), which consists of the sub-
trees corresponding to g χ and gω plus the rules added by item (iv), that
is: a multi-rule µ whose LHS is

˜
n χ, a kernel rule k whose LHS is ˜

nω; µ is
dependent on r χ, i.e., the root of g χ, and k dependent on µ. The LHS of
the kernel rule k includes the marking node created by the root of gω. The

144 technical supplement

existence of t′′χ implies that r χ is applied at least for the match m and creates
a marking node.Therefore, at least one copy of µ is created for

˜
m χ. This copy

is glued in the kernel rule k. The existence of t′′ω implies that rω is applied
at least for m and therefore creates a marking node. The LHS of the rule k
is
˜
nω, and since a match m for n exists and so does a marking node for rω,

k is also applied for
˜
mω. The duration of the marking node created by k is

based on the RHS of Equation 3.6, where the duration a χ .d and aω .d are
used. According toTheorem 3.2.1, these are equal to Z(m, χ) and Z(m,ω),
respectively; thus, the computation by k is equal to Z(m, χUIω). Therefore,
there exists a tuple t′′′ in Gψ such that t′′′ = t. We have shown inclusion ⊆.
We now proceed with inclusion ⊇. Let g be the TGDN defined above.b Let
(obt(a), a.d) be a tuple u in Gψ with a a marking node created by the root k
of g. The LHS of k is

˜
nω, therefore obt(a) yields a match m for n. As shown

before, the duration a.d is equal to Z(a, χUIω). The satisfaction span set
Σψ includes all matches for n paired with their satisfaction span Z. Thus, Σψ
also includes m. Therefore, there exists a tuple u′ ∈ Σψ with u′ = u. We have
shown inclusion ⊆.

From the base case and induction steps, it follows that Lemma 4.1.1 holds.

a.3.6 Lemma 4.1.2: equality of definite satisfaction and falsification span set
and TGDN definite result

First, we elaborate on the proof for Lemma 4.1.2, which states that, given an
RTMH H[τ], a context pattern n, an MTGC ψ over n, and a TGDN gd char-
acterized by the output of Cd(n,ψ), the definite satisfaction and falsification
span set Σdψ in H[τ] is given by the definite result Gdψ of gd , that is:

Σdψ(H[τ]) = Gdψ(H[τ])

Proof. The proof proceeds almost identically to the proof for Lemma 4.1.1.
The similarity is justified by rule definitions in Section 4.1.3 and the proof for
Lemma 4.1.1, where it becomes apparent that rule applications in a TGDN
mainly ensure that matches and their dependencies are structurally present;
the duration computation does not affect the network execution.
This proof relies on the created marking nodes storing both the definite

satisfaction computation Zd and definite falsification computation F: For ex-
ample, for the computation of Zd for negation, the created marking node uses
the F of the dependency, and vice versa; for the computation of the definite
falsification for until and since, the created marking node computes Zd ⊎X of
the dependencies based on their F.

a.3.7 Theorem 4.1.2: equality of TVGDN definite result and query definite an-
swer set

We proceed with the proof forTheorem 4.1.2, i.e., given an RTMH H[τ], a query
(n,ψ) in LT, and a TVGDN gd ,V for (n,ψ), the result Gd ,V of gd ,V over H[τ]
is equal to the definite query answer set Td of (n,ψ) over H[τ].

A.3 proofs 145

Proof. The proof proceeds almost identically to Theorem 4.1.1. The argumen-
tation is only extended to refer to both Zd and F, and their corresponding
duration attributes a.d and a.dF—where at least one of them must be not
empty.

a.3.8 Theorem 4.3.1: equality of aggregation of projected answer sets over a
sequence of pruned RTMH instances and a sequence of complete RTMH

instances

Following is the proof for Theorem 4.3.1, which states that, given a query ζ ∶=
(n,ψ) in LT, a history h[τD] with D ∈ N+, and the sequences hHτD , h

P
τD of

unpruned and pruned RTMH instances corresponding to h[τD], the aggregation
of the projected answer set Tπ over hHτD is equal to the aggregation of Tπ over
hPτD , that is:

D

⋃
i=1
Tπτ i(H[τ i]) =

D

⋃
i=1
Tπτ i(P[τ i])

Proof. The proof proceeds by induction overD. In the following, we omit the
time point of Tπ as it is clear from the context. Moreover, for a tuple u ∶= (m,V)
we refer to the match of the tuple by mu and the temporal validity of the tuple
by Vu.

• Base case:D = 1.
Holds by definition of H[τ1] and P[τ1].

• Induction step:D > 1.
We first need to show that:

j
⋃
i=1
Tπ(H[τ j]) =

j
⋃
i=1
Tπ(P[τ j]) Ô⇒

j+1
⋃
i=1
Tπ(H[τ j+1]) =

j+1
⋃
i=1
Tπ(P[τ j+1])

We first show inclusion ⊆, that is:
j
⋃
i=1
Tπ(H[τ j]) ⊆

j
⋃
i=1
Tπ(P[τ j]) Ô⇒

j+1
⋃
i=1
Tπ(H[τ j+1]) ⊆

j+1
⋃
i=1
Tπ(P[τ j+1])

The proof proceeds by tracking the match of a tuple and its temporal validity
in the projected answer set of a non-pruned RTMH, via three steps, in (1) the
regular answer set over the non-pruned RTMH, and from there to (2) the
regular answer set of a pruned RTMH, and from there to (3) the projected
answer set of the pruned RTMH.

(1) Let t be a tuple (m,V) such that

(m,V) ∈
j+1
⋃
i=1
Tπ(H[τ j+1])

for the query (n,ψ). It either holds that

t ∈
j
⋃
i=1
Tπ(H[τ j])

146 technical supplement

or not. In the former case, it must also hold that

t ∈
j
⋃
i=1
Tπ(P[τ j])

(from the antecedent), and therefore,

t ∈
j+1
⋃
i=1
Tπ(P[τ j+1])

In the latter case, t is inserted by the latest answer set, therefore t ∈
Tπ(H[τ j+1]). By definition ofTπ , it follows that there exists a t′ ∈T(H[τ j+1])
with mt′ the same as mt and Vt′ ∩[τ j−Wr , τ j+1] =Vt withWr the in-
volvement window of ψ from the query. Step 1 is done.

(2) Henceforth, we denote the interval [τ j−W, τ j+1] by Γ. By definition
ofWr , an element e may affect a temporal validity at an arbitrary time
point x only if x ∈ e .λ⊖Wr with λ the lifespan of e, i.e., if e .dts ≥
x −Wr . For Vt′ , the earliest time point for which this may happen
is ℓ(Γ). Hence, if we replace x with ℓ(Γ), we get that all elements e
with e .dts ≥ τ j−2Wr or, since the current time point is τ j+1, all e with
e .dts ∈ [τ j−2Wr ,∞]may affect Vt′ . By definition of a pruned RTMH,
all such elements are contained in P[τ j+1]. Therefore,mt exists in P[τ j+1]
and elements in m that could affect the temporal validity in Vt′ ∩Γ are
unchanged. From this, it follows that there is a t′′ ∈ T(P[τ j+1])withmt′′

the same as mt and Vt′′ =Vt′ . Step 2 is done.
(3) By definition of Tπ , it follows that there is a tuple t′′′ in Tπ(P[τ j+1])

with mt′′′ the same as mt and Vt′′′ equal to Vt′′ ∩Γ which is equal to
Vt . Ergo, t′′′ = t, and also

t ∈
j+1
⋃
i=1
Tπ(P[τ j+1])

Step 3 is done and we have shown the inclusion ⊆.
We proceed with showing the inclusion ⊇, that is:

j
⋃
i=1
Tπ(P[τ j]) ⊆

j
⋃
i=1
Tπ(H[τ j]) Ô⇒

j+1
⋃
i=1
Tπ(P[τ j+1]) ⊆

j+1
⋃
i=1
Tπ(H[τ j+1])

Let t be a tuple (m,V) such that:

(m,V) ∈
j+1
⋃
i=1
Tπ(P[τ j+1])

for the query (n,ψ). If it was true that

t ∈
j
⋃
i=1
Tπ(P[τ j])

it can be shown as in the other direction that

t ∈
j+1
⋃
i=1
Tπ(H[τ j+1])

Otherwise, t ∈ Tπ(P[τ j+1]). We follow the steps from the previous direction
in reverse.

A.3 proofs 147

(1) By definition of Tπ it follows that there is a t′ in T(P[τ j+1]) with mt′

the same as mt and Vt′ =Vt ∩Γ.
(2) By definition of pruning, all elements e whichwere pruned in P[τ j+1] yet

contained inH[τ j+1]must have a dts< τi−2Wr , i.e., e .dts ∈ [0, τi−2Wr).
These elements can not affect the elements ofmt′ or its temporal validity
Vt′ . Therefore, T(H[τ j+1]) contains a tuple t

′′ with mt′′ the same as mt
′

and Vt′′ =Vt′ .

(3) Finally, by definition of Tπ , there is a tuple t′′′ ∈ Tπ(H[τ j+1]) withm its
match and Vt′′′ =Vt′′ therefore equal to Vt . Ergo, t′′′ = t, and therefore,

t is also in
j+1
⋃
i=1
T(H[τ j+1]).

We have shown inclusion ⊇.

By the base case and the induction step, it follows that the theorem holds.

BEXPER IMENTAL EVALUAT ION SUPPLEMENT

This chapter is a supplement to the experimental evaluation presented in Chap-
ter 5. Section B.1 describes the prototypical implementation in further detail.
Section B.2 presents the E2P specification and query formulations for the SHS
case-study in Section 5.2. Section B.3 presents the E2P specification and query
formulations for the SNB experiments in Section 5.3.

b.1 implementation

Section B.1.1 and Section B.1.2 present the grammars and more information on
ITQL and E2P, respectively. Section B.1.3 describes the operation modes of the
EMF plugin.

b.1.1 The InTempo Query Language

The (slightly simplified) grammar of ITQL is shown in Figure B.1, where the
type ID in is a specific type of STRING. InTempo relies on the Story Pattern
Matcher [66, 114] for pattern matching, an EMF tool from the tool support for
SDs in [57]—see also the discussion in Section 6.1.
The main entity in SDs are Story Nodes, which are connected by control flow

edges. Story Nodes contain Story Patterns, which represent structural fragments
that should be matched. ITQL supports the definition of Story Patterns both
by a direct definition (<StoryPattern>) and by a declaration (<Declaration>).
Declarations aim at making the specification of queries more concise—see
Listing B.2 for an example. They are used to building Story Patterns during the
loading of the ITQL file. Story Patterns are passed to the Story Pattern Matcher
which performs the actual matching.
To facilitate the formulation of intervals, ITQL support shorthand notations

for referring to days (“d"), months (“m"), and years (“y"); moreover, the language
supports the specification of open-closed (“oc”), closed-open (“co”), and open-
open intervals (“oo”).

InTempo offers an Xtext [22] editor for ITQL which supports completion
suggestions for element types and validation of the query syntax.

b.1.2 The Events-to-Patterns Specification Language

The grammar of E2P is shown in Figure B.2. The main challenge in designing
E2P was the capability to translate from an event-specific to a platform-specific
reference system. For example, within the log, events might be linked together
by referring to the identifiers of other events but once stored in an RTMH this
identifier, or id for short, becomes a regular vertex attribute which cannot be
used to immediately identify the vertex.

149

150 experimental evaluation supplement

⟨Condition⟩ ::= ⟨And⟩ (‘declarations’ ‘{’ ⟨Declaration⟩* ‘}’)?
⟨And⟩ ::= ⟨Until⟩ (‘AND’ ⟨Until⟩)?
⟨Until⟩ ::= ⟨Since⟩ (‘U’ interval=⟨Interval⟩ ⟨Since⟩)?
⟨Since⟩ ::= ⟨BasicCondition⟩ (‘S’ interval=⟨Interval⟩ ⟨BasicCondition⟩)?
⟨BasicCondition⟩ ::= ‘true’ | ⟨Not⟩ | ⟨Exists⟩ | ‘(’ ⟨And⟩ ‘)’ | ⟨Proxy⟩
⟨Not⟩ ::= ‘!’ ⟨BasicCondition⟩
⟨Exists⟩ ::= ‘E’ ((⟨StoryPattern⟩ | ⟨Proxy⟩) ⟨Binding⟩?

| ‘(’ (⟨StoryPattern⟩ | ⟨Proxy⟩) ⟨Binding⟩? (‘,’ ⟨And⟩)? ‘)’)
⟨StoryPattern⟩ ::= ID ‘{’ (⟨StoryPatternObject⟩ | ⟨StoryPatternLink⟩

| ‘[’ ⟨StringExpression⟩ ‘]’)* ‘}’
⟨StoryPatternObject⟩ ::= ID ‘:’ ⟨ScopedType⟩
⟨StoryPatternLink⟩ ::= ⟨QualifiedName⟩ ‘-’ ⟨ScopedFeature⟩ ‘->’ ⟨QualifiedName⟩
⟨StringExpression⟩ ::= ID ‘:’ STRING

⟨ScopedType⟩ ::= ID (‘::’ ID)?

⟨ScopedFeature⟩ ::= ID

⟨Proxy⟩ ::= ‘$’ ⟨QualifiedName⟩
⟨Binding⟩ ::= ‘[’ ⟨Mapping⟩* ‘]’
⟨Mapping⟩ ::= ID ‘->’ ID

⟨Declaration⟩ ::= ⟨NamedExpression⟩ | ⟨StoryPattern⟩
⟨NamedExpression⟩ ::= ID ‘:’ ⟨And⟩
⟨QualifiedName⟩ ::= ID (‘.’ ID)*

⟨Interval⟩ ::= ‘[’ (‘0’..‘9’)* (‘d’ | ‘m’ | ‘y’)? ‘,’ ((‘0’..‘9’)* (‘d’ | ‘m’ | ‘y’)? | ‘*’) ‘]’ (‘oc’ | ‘co’ |
‘oo’)?

Figure B.1: The grammar of ITQL

B.1 implementation 151

⟨Event⟩ ::= STRING ‘:{’ ⟨Action⟩* ‘}’
⟨Action⟩ ::= ⟨Add⟩ | ⟨AddRef ⟩ | ⟨Delete⟩ | ⟨DeleteRef ⟩ | ⟨Modify⟩
⟨Add⟩ ::= ‘adds’ (⟨ReferralByName⟩ ’:’)? ID

(‘»’⟨Commit⟩)? (‘[’ ⟨AttributeAssignment⟩*‘]’)?
⟨Delete⟩ ::= ‘deletes’ ⟨ReferralByRetrieval⟩
⟨Modify⟩ ::= ‘modifies’ ⟨Referral⟩ ‘[’ ⟨AttributeAssignment⟩* ‘]’
⟨AddRef ⟩ ::= ‘adds-ref’ ⟨Referral⟩ ‘-’ ID ‘->’ ⟨Referral⟩
⟨AddRefs⟩ ::= ‘adds-refs’ ⟨Referral⟩ ‘-’ ID ’->’ ⟨BatchReferralByRetrieval⟩
⟨DeleteRef ⟩ ::= ‘deletes-ref’ ID ⟨Referral⟩ ‘->’ ⟨Referral⟩
⟨Commit⟩ ::= ID ‘(’ ⟨Value⟩ ‘)’
⟨Referral⟩ ::= ⟨ReferralByName⟩ | ⟨ReferralByRetrieval⟩
⟨ReferralByRetrieval⟩ ::= ‘$’ ID ‘(’ ⟨Value⟩ ‘)’
⟨BatchReferralByRetrieval⟩ ::= ‘$’ ID ‘(’ ⟨Value⟩ ‘+)’
⟨ReferralByName⟩ ::= ID

⟨AttributeAssignment⟩ ::= ID ‘=’ ⟨Value⟩
⟨Value⟩ ::= ⟨StringValue⟩ | ⟨ParameterValue⟩
⟨StringValue⟩ ::= STRING

⟨ParameterValue⟩ ::= ‘*p’ INT ((‘~*p’ INT)? (‘+’ INT)? (‘-’ INT)?);

Figure B.2: The grammar of E2P

Hence, E2P implements an indexing system so that specifications may des-
ignate specific nodes to be indexed: either for event-wide use, i.e., within an
event mapping, for example, when an event adds multiple elements and ele-
ments added later need to refer to those added earlier; or specification-wide,
i.e., outside the event mapping, for example, when an element needs to refer
to a vertex that has been added by a previous event. The indexing system is
realized by <Commit> and <Referral>. The token “>>” marks that the node
being added should be indexed, i.e., committed, for specification-wide reference.
The succeeding parameters denote the name of the index as well as the key the
vertex should be added under. See Listing B.1 for an example, where the created
instance of PMonitoringService is added to an index named PMServices.
The key under which this new instance is indexed is the value of the first at-
tribute of the event.This is achieved by the <ParameterValue> statement, which
retrieves a value of the parameter in a given position of the event, specified by
the “*” token. For conveniently creating unique ids for links that are encoded
as vertices, this statement also supports the concatenation of values, using the
token “˜”, and basic arithmetic operations, i.e., addition and subtraction, which
are performed upon the retrieval of the value. Declared indices, if any, are
created during initialization of InTempo. Event-wide references are marked by
the name before a type, e.g., the pm in pm:PMonitoringService.
Referrals to indexed node can be made either by retrieving a node from an

index (ReferralByRetrieval), using the token “$” together with the name of the
index and the key, or by referring to a named reference (ReferralByName), e.g.,
the adds-ref statement in Listing B.1 where an edge is created from the pm to

152 experimental evaluation supplement

the instance pr of type Probe. Nodes added during initialization (see init in
Listing B.1), are indexed by default and can be thus referred to by name by all
mappings. BatchReferralByRetrieval allows for referring to multiple indexed
nodes at the same time, i.e., a functionality required by the SNB files where a
newly created message may have many tags, all passed in the same event—see
Listing B.8.
As with ITQL, InTempo offers an Xtext editor for E2P which supports

completion suggestions for element types in the imported metamodel and
validation of the mapping syntax.

b.1.3 Operation Modes

InTempo supports two operation modes, assuming different settings: One
mode, the RTMHAnalysis, supports the evaluation of a temporal query over
an RTMH, whereas the other, the LogAnalysis, assumes that, instead of being
captured by an RTMH, data about the system execution are captured by events
in a log. In practice, the LogAnalysis triggers an RTMHAnalysis on an internally
created RTMH, following the mapping of an event to model changes performed
on the RTMH in question.

InTempo can be used either via the EMF user interface or via an API. If the
user interface is used, RTMHAnalysis expects a user-specified ITQL query (in
a file with .itql extension) and a user-provided RTMH, i.e., a persisted instance
of an EMF model in the standard XMI format. LogAnalysis expects an ITQL
query, a log file containing comma-separated values (see Table B.1), and the
E2P mapping (a file with an .e2p extension).
If the API is used, it is expected that the inputs are passed programmatically.

In case of RTMHAnalysis, the RTMH model can be passed either via an XMI
file or as an object. In case of LogAnalysis, InTempo can be used to either
iteratively analyze a log file or a single event; in the latter case, it is assumed
that an external application, i.e., an adaptation engine, is using InTempo and
managing the processing of events generated by a system. In the API operation
mode, the RTMH as well as query answers are always available to external tools
for further processing.

b.2 smart hospital system

b.2.1 Log Synthesis

The logs discussed in this section are available in an online repository in [133].
The following text is a summary of the documentation accompanying the logs
in the repository. We refer the reader to this documentation for more details on
the employed statistical methods. The logs presented here have been extended
with deletion events—see Section 5.2.1; these logs are available in [134] and
were used in the experimental evaluation of the SHS case-study in Section 5.2.
The logs are based on a real log which records 1050 patient cases diagnosed

with sepsis and admitted to the emergency ward of a hospital over the course of
1.5 years [108].The log records patient trajectories, i.e., the course of patients that
have been diagnosed with sepsis during their stay in the hospital.The trajectory

B.2 smart hospital system 153

Table B.1: Exemplary Log Entries

1,ER Sepsis Triage,1414013868

2,ER Sepsis Triage,1414022808

1,IV Antibiotics,1414927128

is tracked via events recorded by the Enterprise Resource Planning system of
the hospital. The logs are used for checking the compliance of trajectories to
the medical guideline in [126], which is also used in Section 5.2.
In its original form, the log contains several types of medical and logisti-

cal events. We create a simplified event log which retains only three relevant
types of events: the event ER Sepsis Triage, indicating the beginning of a
trajectory, i.e., the admission of a patient diagnosed with sepsis; the event IV
Antibiotics, indicating the intravenous administration of antibiotics to treat
sepsis; and the Release events which are variants of an event which largely
corresponds to the end of the patient treatment. Each trajectory in the real log
is represented by a trace (a sequence of events) and starts with a recorded ER
Sepsis Triage. The original log contains one trace that does not start with
an ER Sepsis Triage event which is omitted from our simplified version.
Hence, the simplified version contains 1049 trajectories. IV Antibiotics and
Release events may follow an ER Sepsis Triage event.
The original log also records several metadata per event. The simplified log

contains only the trace id of an event, i.e., an identification number which
captures the trace to which the event belongs, and the timestamp, i.e., the date
and time (with millisecond precision) on which the event occurred. Entries in
the simplified log are comma-separated values of the following form: <TRACE
ID>,<EVENT>,<TIMESTAMP>. Timestamp values are transformed into a unix
timestamp. Table B.1 shows exemplary log entries from the simplified event
log; this log is henceforth referred to as real.
The inter-arrival time (IAT) between two events capture the elapsed time

between the occurrence of these two events.We denote the IAT between two ER
Sepsis Triage events by IATT . Similarly, the IAT is calculated for pairs of the
events ER Sepsis Triage and IV Antibiotics (IATSA) and ER Sepsis

Triage and Release (IATSR). For each of these calculated measures, a data
series was created that consists of 1048 IATs values, i.e., one for each pair of
events. Based on statistical methods, a probability distribution was derived that
best fitted each data series. Following the procedure described in [133], these
distributions enabled the generation of x10 and x100; the logs cover the same
period of time as the real log and increase the trajectory density (approx.) 10
and 100 times, respectively, while preserving the statistical characteristics of
the real log.

b.2.2 E2P Specification for the SHS

The E2P specification used for mapping events into the SHS log files to model-
specific changes is shown in Listing B.1. The model-specific changes are based
on the SHS metamodel in Figure 2.1, which is imported at the very top of the
E2P specification.

154 experimental evaluation supplement

import ’http://mdelab.de/intempo/examples/shs/1.0’

init:{adds hospital:SHSRoot}

"ER Sepsis Triage":{adds pm:PMonitoringService >> PMServices(*p1) [ID=*p1]
adds pr:Probe >> SProbes(*p1) [ID=*p1 status="sepsis" cts=*p3]
adds-ref pm -probes-> pr
adds-ref hospital -ownedServices-> pm}

"IV Antibiotics":{adds d:DrugService >> DServices(*p1) [ID=*p1]
adds pr:Probe >> AProbes(*p1) [ID=*p1 status="anti" cts=*p3]
adds-ref d -probes-> pr
adds-ref hospital -ownedServices-> d}

"Release A":{adds pr:Probe >> RProbes(*p1) [ID=*p1 status="release" cts=*p3]
adds-ref $PMServices(*p1) -probes-> pr}

"Release B":{adds pr:Probe >> RProbes(*p1) [ID=*p1 status="release" cts=*p3]
adds-ref $PMServices(*p1) -probes-> pr}

"Release C":{adds pr:Probe >> RProbes(*p1) [ID=*p1 status="release" cts=*p3]
adds-ref $PMServices(*p1) -probes-> pr}

"Release D":{adds pr:Probe >> RProbes(*p1) [ID=*p1 status="release" cts=*p3]
adds-ref $PMServices(*p1) -probes-> pr}

"Release E":{adds pr:Probe >> RProbes(*p1) [ID=*p1 status="release" cts=*p3]
adds-ref $PMServices(*p1) -probes-> pr}

"Delete Sepsis Probe":{modifies $SProbes(*p1) [dts=*p3]}

"Delete PMonitoringService":{modifies $PMServices(*p1) [dts=*p3]}

"Delete Antibiotics Probe":{modifies $AProbes(*p1) [dts=*p3]}

"Delete Drug Service":{modifies $DServices(*p1) [dts=*p3] }

"Delete Release Probe":{modifies $RProbes(*p1) [dts=*p3]}

Listing B.1: The mapping of events to model modifications for the SHS

b.2.3 Queries in ITQL

The queries MG1 and MG2 are described in Section 4.4.1. Their specification in
ITQL is shown in Listing B.2 and Listing B.3, respectively. The specifications
refer to entity types in the SHS metamodel in Figure 2.1.

b.2.4 Formulas in MFOTL

MonPoly uses a specification language which is based on the MFOTL. As
MTGL, MFOTL is a metric temporal logic, which allows for preserving the
main structure of the MTGC ψMG1. The query MG1 ∶= (u1,ψMG1) is translated
into a formula ∃u1∧¬ψMG1 in MFOTL. Lifespans and patterns require a special
handling which we described in Section 5.4.1. The formula in MFOTL corre-
sponding to MG1 is showed in Listing B.4. This construction has to be guarded
by an (atomic) event, which we also ensure; in practice, this means MonPoly
ignores some deletion events compared to InTempo and Hawk. A temporal
operator with no metric interval is a shorthand for the same operator with

B.2 smart hospital system 155

import ’http://mdelab.de/intempo/examples/shs/1.0’

($u1, !(true U[0,3600] E $u11))

declarations{
u1{pr1:Probe

pm:PMonitoringService
s:SHSService
pm -probes-> pr1
s -connected-> pm
[OCL:"pr1.status=’sepsis’"]}

u11{pr2:Probe
pm:PMonitoringService
s:SHSService
d:DrugService
d -probes-> pr2
s -connected-> pm
s -connected-> d
[OCL:"pr2.status=’anti’"]
[OCL:"pm.pID=d.pID"]}

}

Listing B.2: The query MG1 in ITQL

import ’http://mdelab.de/intempo/examples/shs/1.0’

($u1, !(!(E $u12) U[0,3600] E $u11))

declarations{
u1{pr1:Probe

pm:PMonitoringService
s:SHSService
pm -probes-> pr1
s -services-> pm
[OCL:"pr1.status=’sepsis’"]}

u11{pr2:Probe
pm:PMonitoringService
s:SHSService
d:DrugService
d -probes-> pr2
s -services-> pm
s -services-> d
[OCL:"pr2.status=’anti’"]
[OCL:"pm.pID=d.pID"]}

u12{pr3:Probe
pm:PMonitoringService
s:SHSService
pm -probes-> pr3
s -services-> pm
[OCL:"pr3.status=’release’"]}

}

Listing B.3: The query MG2 in ITQL

156 experimental evaluation supplement

EXISTS q,x,y,z .
(probe(x,"sepsis") AND ONCE (
((NOT del_mprobes(x,y)) SINCE mprobes(x,y))
AND ONCE (
((NOT del_mconnected(y,z)) SINCE mconnected(y,z))
AND ONCE (
((NOT del_mservice(y,q)) SINCE mservice(y,q))
AND ONCE shs(z)))))

AND NOT EVENTUALLY[0,3600] EXISTS a,b,p .
(probe(a,"anti")
AND ONCE (
((NOT del_dprobes(a,b)) SINCE dprobes(a,b))
AND ONCE (
((NOT del_dconnected(b,z)) SINCE dconnected(b,z))
AND ONCE (
((NOT del_dservice(b,p)) SINCE dservice(b,p))
AND p=q AND ONCE shs(z)))))

Listing B.4: The translation of the query MG1 into a formula in MFOTL

the interval [0,∞). The logs used in the MonPoly experiments track time in
seconds which is also the assumed granularity in the timing constraints of the
formulas.
The query MG2 is analogously translated into the formula shown in List-

ing B.5. As mentioned previously, MG2 cannot be monitored by MonPoly.

EXISTS q,x,y,z .
(probe(x,"sepsis") AND ONCE (
((NOT del_mprobes(x,y)) SINCE mprobes(x,y))
AND ONCE (
((NOT del_mconnected(y,z)) SINCE mconnected(y,z))
AND ONCE (
((NOT del_mservice(y,q)) SINCE mservice(y,q))
AND ONCE shs(z)))))

AND NOT EXISTS a,b,p,d .
(NOT probe(d,"release") AND ONCE
((NOT del_mprobes(x,y)) SINCE mprobes(x,y))
AND ONCE (
((NOT del_mconnected(y,z)) SINCE mconnected(y,z))
AND ONCE (
((NOT del_mservice(y,q)) SINCE mservice(y,q))
AND ONCE (shs(z))))))

UNTIL[0,3600] EXISTS a,b,p .
(probe(a,"anti")
AND ONCE (
((NOT del_dprobes(a,b)) SINCE dprobes(a,b))
AND ONCE (
((NOT del_dconnected(b,z)) SINCE dconnected(b,z))
AND ONCE (
((NOT del_dservice(b,p)) SINCE dservice(b,p))
AND p=q AND ONCE shs(z)))))

Listing B.5: The translation of the query MG2 into a formula in MFOTL. The formula
cannot be monitored by MonPoly

b.2.5 Queries in EOL

Hawk assigns timestamps to versions based on the timestamp of the cor-
responding git commit, which is tracked in milliseconds. Therefore, timing

B.3 social network benchmark 157

constraints in EOL are adjusted accordingly. The queries MG1 and MG2 are
translated into EOL as described in Section 5.4.2. To the extent possible, the
translations follow the structure of the correspondingMTGCs.The translations
for MG1 and MG2 are presented in Listing B.6 and Listing B.7, respectively.

return
Probe.getVersionsFrom(Probe.latest.time-7200000)
.all.flatten.asSet
.select(p | p.status="sepsis").select(
p | p.eContainer.select(
pmon | pmon.eContainer.select(
shs | not shs.eventually(
shsp | shsp.connected.exists(
d | d.isTypeOf(DrugService) and d.pID=pmon.pID
and d.probes.exists(
p2 | p2.status="anti"
and p2.earliest.time <= p.earliest.time+3600000
and p2.earliest.time > p.earliest.time))))

.notEmpty)
.notEmpty)
.collect(p | Map{"pid"=p.eContainer.pID, "time"=p.earliest.time})
.flatten;

Listing B.6: The query MG1 in EOL

return
Probe.getVersionsFrom(Probe.latest.time-7200000)
.all.flatten.asSet
.select(p | p.status="sepsis").select(
p | p.eContainer.select(
pmon | pmon.eContainer.select(
shs | not shs.eventually(
shsp | shsp.connected.exists(
d | d.isTypeOf(DrugService) and d.pID=pmon.pID
and d.probes.exists(
p2 | p2.status="anti"
and p2.earliest.time <= p.earliest.time+3600000
and p2.earliest.time > p.earliest.time
and not Probe.getVersionsBetween(p.earliest.time,p2.earliest.time)
.all.flatten.asSet.exists(pp | pp.eContainer=pmon and pp.status="release"))))

.notEmpty)
.notEmpty)
.collect(p | Map{"pid"=p.eContainer.pID,"time"=p.earliest.time})
.flatten;

Listing B.7: The query MG2 in EOL

b.3 social network benchmark

b.3.1 E2P Specification for the SNB

The E2P specification that maps events in the SNB logs into model-specific
changes is shown in Listing B.8. The model-specific changes are based on the
SNB metamodel in Figure 5.4.

import ’http://mdelab.de/intempo/examples/ldbc_snb/1.0’

158 experimental evaluation supplement

init:{adds model:LdbcSNBModel}

//Static
"CREATE_TAGCLASS":{adds tc:TagClass >> TagClasses(*p2) [ID=*p2 name=*p3]

adds-ref model -ownedTagClasses-> tc}

"CREATE_TAG":{adds t:Tag >> Tags(*p2) [ID=*p2 name=*p3]
adds-ref t -hasType-> $TagClasses(*p4)
adds-ref model -ownedTags-> t}

"CREATE_COUNTRY":{adds country:Country >> Countries(*p2) [ID=*p2 name=*p3]
adds-ref model -ownedCountries-> country}

"CREATE_CITY":{adds city:City >> Cities(*p2) [ID=*p2]
adds-ref city -isPartOf-> $Countries(*p3)
adds-ref model -ownedCities-> city}

"CREATE_UNIVERSITY":{adds uni:University >> Unis(*p2) [ID=*p2]
adds-ref uni -isLocatedIn-> $Cities(*p3)
adds-ref model -ownedUniversities-> uni}

"CREATE_COMPANY":{adds com:Company [ID=*p2]
adds-ref com -isLocatedIn-> $Countries(*p3)
adds-ref model -ownedCompanies-> com}

//Dynamic
"CREATE_PERSON":{adds p:Person >> Persons(*p2) [ID=*p2 firstName=*p3]

adds-ref p -isLocatedIn-> $Cities(*p4)
adds-refs p -hasInterest-> $Tags(*p5+)
adds-ref model -ownedPersons-> p}

"DELETE_PERSON":{modifies $Persons(*p2) [dts=*p1]}

"CREATE_MEMBER":{adds hmL:HasMemberLink >> MemberLinks(*p3~*p2)
adds-ref hmL -forum-> $Forums(*p2)
adds-ref hmL -person-> $Persons(*p3)
adds-ref model -ownedHasMemberLinks-> hmL}

"DELETE_MEMBER":{modifies $MemberLinks(*p2~*p3) [dts=*p1]}

"CREATE_FORUM":{adds f:Forum >> Forums(*p2) [ID=*p2]
adds-ref model -ownedForums-> f}

"DELETE_FORUM":{modifies $Forums(*p2) [dts=*p1]}

"CREATE_LIKES":{adds lL:LikesLink >> LikesLinks(*p2~*p3)
adds-ref lL -person-> $Persons(*p2)
adds-ref lL -likes-> $Messages(*p3)
adds-ref model -ownedLikesLinks-> lL}

"DELETE_LIKES":{modifies $LikesLinks(*p2~*p3) [dts=*p1]}

"CREATE_POST":{adds m:Post >> Messages(*p2) [ID=*p2]
adds-ref m -hasCreator-> $Persons(*p4)
adds-ref m -isLocatedIn-> $Countries(*p5)
adds-ref m -container-> $Forums(*p6)
adds-refs m -hasTag-> $Tags(*p7+)
adds-ref model -ownedPosts-> m}

"DELETE_POST":{modifies $Messages(*p2) [dts=*p1]}

"CREATE_COMMENT":{adds c:Comment >> Messages(*p2) [ID=*p2]
adds-ref c -hasCreator-> $Persons(*p3)
adds-ref c -isLocatedIn-> $Countries(*p4)
adds-ref c -replyOf-> $Messages(*p5)
adds-refs c -hasTag-> $Tags(*p6+)
adds-ref model -ownedComments-> c}

"DELETE_COMMENT":{modifies $Messages(*p2) [dts=*p1]}

B.3 social network benchmark 159

"CREATE_KNOWS":{adds kL:KnowsLink >> KnowsLinks(*p2~*p3)
adds-ref $Persons(*p2) -knows-> kL
adds-ref kL -knows-> $Persons(*p3)
adds-ref model -ownedKnowsLinks-> kL}

"DELETE_KNOWS":{modifies $KnowsLinks(*p2~*p3) [dts=*p1]}

Listing B.8: The mapping from events to model modifications for the SNB

b.3.2 Queries in ITQL

The queries IC4 and IC5 are described in Section 5.3. Their corresponding
specification in ITQL is shown in Listing B.10 and Listing B.9.The specifications
refer to entity types in the metamodel in Figure 5.4.

import ’http://mdelab.de/intempo/examples/ldbc_snb/1.0’

($p1,!(!E$p11 AND !E($p12, E$p121))
AND (true S[0,1m] E ($p13, (!(true S[0,1]oo E$p131)))))

declarations{
p1{p2:Person

p2 -hasCreated-> m
m:Post
m -container-> f
f:Forum}

p11{p2:Person
p1:Person
kL12:KnowsLink
p1 -knows-> kL12
kL12 -knows-> p2
[OCL:"p1.ID=181"]}

p12{p2:Person
p3:Person
kL32:KnowsLink
p3 -knows-> kL32
kL32 -knows-> p2}

p121{p1:Person
p3:Person
kL13:KnowsLink
p1 -knows-> kL13
kL13 -knows-> p3
[OCL:"p1.ID=181"]}

p13{p2:Person
Mem:HasMemberLink
f:Forum
Mem -forum-> f
Mem -person-> p2}

p131{Mem:HasMemberLink}
}

Listing B.9: The query IC5 in ITQL

160 experimental evaluation supplement

import ’http://mdelab.de/intempo/examples/ldbc_snb/1.0’

($q1, E($q11, E($q111, !(true S[0,1]oo E $q1111))
AND (true S[0,1y] E($q112,
!(true S[0,1]oo E $q1121) AND !(true S[0,*]co E($q1122, E $q11221)))))

declarations{
q1{t:Tag}

q11{t:Tag
p2:Person}

q111{p2:Person
p1:Person
kL:KnowsLink
p1 -knows-> kL
kL -knows-> p2
[OCL:"p1.ID=181"]}

q1111{kL:KnowsLink}

q112{t:Tag
m:Post
p2:Person
m -hasTag-> t
p2 -hasCreated-> m}

q1121{p2:Person
p2 -hasCreated-> m
m:Post}

q1122{p1:Person
kL2:KnowsLink
p1 -knows-> kL2
kL2 -knows-> p3
p3:Person
m2:Post
p3 -hasCreated-> m2
t:Tag
m2 -hasTag-> t}

q11221{p1:Person
p3:Person
kL2:KnowsLink
p1 -knows-> kL2
kL2 -knows-> p3
[OCL:"p1.ID=181"]}

}

Listing B.10: The query IC4 in ITQL

CPUBL ICAT IONS

Parts of the contributions in this thesis have been published in the following
peer-reviewed conference proceedings and journals.

• Lucas Sakizloglou, Sona Ghahremani, Matthias Barkowsky, and Holger
Giese. “Incremental Execution of Temporal Graph Queries over Runtime
Models withHistory and Its Applications.” In: Software and SystemsModeling
21.5 (Oct. 1, 2022), pp. 1789–1829. issn: 1619-1374. doi: 10.1007/s10270-
021-00950-6

• Lucas Sakizloglou, Matthias Barkowsky, and Holger Giese. “Keeping Pace
with the History of Evolving Runtime Models.” In: Fundamental Approaches
to Software Engineering. Ed. by Esther Guerra andMariëlle Stoelinga. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2021,
pp. 262–268. isbn: 978-3-030-71500-7. doi: 10.1007/978-3-030-71500-
7_13

• Lucas Sakizloglou, Sona Ghahremani, Matthias Barkowsky, and Holger
Giese. “A Scalable Querying Scheme for Memory-Efficient Runtime Models
with History.” In: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. MODELS ’20. New
York, NY, USA: Association for ComputingMachinery, Oct. 18, 2020, pp. 175–
186. isbn: 978-1-4503-7019-6. doi: 10.1145/3365438.3410961

• Lucas Sakizloglou, Sona Ghahremani, Thomas Brand, Matthias Barkowsky,
and Holger Giese. “Towards Highly Scalable Runtime Models with History.”
In: Proceedings of the IEEE/ACM 15th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS ’20. New York,
NY, USA: Association for Computing Machinery, June 29, 2020, pp. 188–194.
isbn: 978-1-4503-7962-5. doi: 10.1145/3387939.3388614

Our contributions are partly founded on the Metric Temporal Graph Logic
(see Section 2.3) and related formal results. These foundations constitute joint
work of the author and have been published in the following peer-reviewed
conference proceedings and journals.

• Sven Schneider, Maria Maximova, Lucas Sakizloglou, and Holger Giese.
“Formal Testing of Timed Graph Transformation Systems Using Metric
Temporal Graph Logic.” In: International Journal on Software Tools for Tech-
nology Transfer 23.3 (June 2021), pp. 411–488. issn: 1433-2779, 1433-2787. doi:
10.1007/s10009-020-00585-w

• Sven Schneider, Lucas Sakizloglou, Maria Maximova, and Holger Giese.
“Optimistic and Pessimistic On-the-fly Analysis for Metric Temporal Graph
Logic.” In: Graph Transformation. Ed. by Fabio Gadducci and Timo Kehrer.

161

https://doi.org/10.1007/s10270-021-00950-6
https://doi.org/10.1007/s10270-021-00950-6
https://doi.org/10.1007/978-3-030-71500-7_13
https://doi.org/10.1007/978-3-030-71500-7_13
https://doi.org/10.1145/3365438.3410961
https://doi.org/10.1145/3387939.3388614
https://doi.org/10.1007/s10009-020-00585-w

162 publications

Lecture Notes in Computer Science. Cham: Springer International Publish-
ing, 2020, pp. 276–294. isbn: 978-3-030-51372-6. doi: 10.1007/978-3-
030-51372-6_16

• Holger Giese, Maria Maximova, Lucas Sakizloglou, and Sven Schneider.
“Metric Temporal Graph Logic over Typed Attributed Graphs.” In: Fun-
damental Approaches to Software Engineering. Ed. by Reiner Hähnle and
Wil van der Aalst. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2019, pp. 282–298. isbn: 978-3-030-16722-6. doi:
10.1007/978-3-030-16722-6_16

https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/978-3-030-16722-6_16

L I ST OF F IGURES

Figure 2.1 Metamodel of the SHS (excerpt) 9
Figure 2.2 A rudimentary RTM based on the metamodel in Fig-

ure 2.1 10
Figure 2.3 The history hG7 comprising the RTMsG2,G4,G5, and

G7 11
Figure 2.4 Statements on SHS as patterns—braces contain boolean

expressions over the values of attributes of the pat-
tern; vertices with the same label refer to the same
vertex in the host graph 13

Figure 2.5 GDN(right) and themarking rules rn1.1 , r¬ for θ1 17
Figure 3.1 The history hG7 comprising the RTMsG2,G4,G5, and

G7 22
Figure 3.2 RTMH Instances H[5] and H[7] 23
Figure 4.1 Overview of InTempo 39
Figure 4.2 The rules induced byMTGLoperators in the temporal

approach. The type of rules is in parentheses. The
assumed context pattern for all rules contains only
the entity s of type SHSService; exists is based on n1
in Figure 2.4. The rule induced by since is identical in
structure to that for until. 43

Figure 4.3 The TGDN constructed by C(n1,ψ1) with ψ1 ∶= ¬∃
n1.1U[0,60] ∃n1.2, where AMRs, i.e., rU, r¬, r∃1 , and
r∃2 , are represented by a single rule; the context pat-
tern in theAMRs is the pattern n1 fromFigure 2.4. 47

Figure 4.4 RTMH Instances H[5] and H[7] 52
Figure 4.5 Projected answer sets Tπτ i and T

π
τ i+1 obtained for two

consecutive time points τi and τi+1 60
Figure 4.6 Overview of InTempo and system interaction for

adaptation 64
Figure 4.7 History-aware adaptation engine 64
Figure 4.8 Patterns for self-adaptation in SHS—the usage of the

same label for vertices denotes that vertices refer to
the same entity in the RTMH 65

Figure 5.1 Cumulative time of loop activities for MG1 73
Figure 5.2 Cumulative time of loop activities for MG2 74
Figure 5.3 Time forAnalyze activity per variant (MG1 - x100) 74
Figure 5.4 Relevant excerpt of themetamodel of the SNB 75
Figure 5.5 Graph patterns used for IC4, where $input denotes

an input parameter provided to InTempo 76
Figure 5.6 Graph patterns used for IC5 77
Figure 5.7 Query evaluation time (IC4 - sf-0.1) 79
Figure 5.8 Query evaluation time (IC4 - sf-1) 80
Figure 5.9 Query evaluation time (IC5 - sf-0.1) 80
Figure 5.10 Query evaluation time (IC5 - sf-1) 80

163

Figure 5.11 Speedup of issue detection time of IT↻ over Hawk
(MG1 - x10)—values below the dashed line indicate
invocations for which IT↻ was slower than Hawk
86

Figure 5.12 Speedup of issue detection time of IT↻+P over Hawk
(MG1 - x10) 86

Figure B.1 The grammar of ITQL 150
Figure B.2 The grammar of E2P 151

L I ST OF TABLE S

Table 3.1 The computation for the satisfaction spanZ for (n1,ψ1)
over H[7];m1 and p1 denote the matches for n1 which
involve pm1 and pm2, respectively. 28

Table 3.2 The computation for the definite satisfaction compu-
tation Zd , definite falsification computation F, and
(for reference) the satisfaction computation Z for
(n1,ψ1) over H[5]; all results concern the match m1
for n1 which includes the entity pm1. 36

Table 4.5 An overview of the introduced answer sets for LT
and their characteristics 68

Table 5.1 Overviewof input logs: the number of events ismapped
to the number of vertices and edges created in the
model; the column Deleted shows the percentage
of deletions for vertices and edges contained in the
logs 72

Table 5.2 Query evaluation time (cumulative) for IC4 and IC5
(secs - rounded) 79

Table 5.3 Memory consumption (max) for IC4 and IC5 (MBs) 81
Table 5.4 Issue detection time (cumulative) for MG1 and MG2

(secs - rounded) 84
Table 5.5 Memory consumption (max) forMG1 andMG2 (MBs) 85
Table 6.1 Dimensions and features for identifying anddiscussing

related work. 94
Table 6.2 Support for the features in Table 6.1 in closely related

work 97
Table B.1 Exemplary Log Entries 153

L I ST OF L I ST INGS

Listing 5.1 ThequeryMG1 in ITQL (excerpt fromListingB.2) 70

164

Listing 5.2 An E2P mapping for the ER Sepsis Triage event in the
SHS case-study 71

Listing B.1 Themapping of events to model modifications for the
SHS 154

Listing B.2 The query MG1 in ITQL 155
Listing B.3 The query MG2 in ITQL 155
Listing B.4 The translation of the query MG1 into a formula in

MFOTL 156
Listing B.5 The translation of the query MG2 into a formula in

MFOTL. The formula cannot be monitored by Mon-
Poly 156

Listing B.6 The query MG1 in EOL 157
Listing B.7 The query MG2 in EOL 157
Listing B.8 The mapping from events to model modifications for

the SNB 157
Listing B.9 The query IC5 in ITQL 159
Listing B.10 The query IC4 in ITQL 160

ACRONYMS

AC Application Condition
AMR Amalgamated Marking Rule
BMR Basic Marking Rule
CEP Complex Event Processing
E2P Events-to-Patterns Specification Language
EMF Eclipse Modeling Framework
EOL Epsilon Object Language
GDN Generalized Discrimination Network
GT Graph Transformation
GTS Graph Transformation System
ITQL InTempo Query Language
LHS Left-hand Side
MDE Model-driven Engineering
MFOTL Metric First-Order Temporal Logic
MTGC Metric Temporal Graph Condition
MTGL Metric Temporal Graph Logic
MTL Metric Temporal Logic
NGC Nested Graph Condition
OCL Object Constraint Language
RHS Right-hand Side

165

RTM Runtime Model
RTMH Runtime Model with History
RV Runtime Verification
SAS Self-adaptive System
SD Story Diagram
SHS Smart Healthcare System
SNB Social Network Benchmark
TGDN Temporal GeneralizedDiscriminationNetwork
TSSD Timed Scenario Story Diagram
TVGDN Temporal Validity Generalized Discrimination

Network

INDEX

adaptation engine, 63
adaptation rule, 9, 63
adjacent intervals, 129
amalgamated graph transformation rule, 15
amalgamated marking rule, 42
answer set, 13
application condition, 14
architectural runtime model, 8
architectural snapshot, 8
attribute assignments, 12
attribute constraints, 13

binding, 14

causal connection, 8
compatible match, 14
context pattern, 17

definite answer set, 36
definite falsification computation, 33
definite falsification relation, 30
definite falsification span, 33
definite result of temporal generalized discrimination network, 50
definite satisfaction and falsification span set, 50
definite satisfaction computation, 33
definite satisfaction relation, 30
definite satisfaction span, 33
delay, 33, 57
duration attribute, 41

166

effective answer set, 57
entity lifespan, 21
epsilon object language, 82
event, 10

generalized discrimination network, 16
graph pattern, 13
graph query, 13
graph query language, 13
graph transformation, 15
graph transformation rule, 15
graph transformation system, 15
graph with history, 19

hawk, 82
history, 10
history-aware adaptation engine, 64
host graph, 13

incremental evaluation, 18
inline model transformation, 9
intempo, 39
interval set, 25

kernel rule, 15, 130
knowledge base, 8

local search, 18

MAPE-K feedback loop, 8, 63
marking rule, 16
match, 13
match lifespan, 24
metamodel, 8
metric first-order temporal logic, 101
metric temporal graph logic, 19
metric temporal logic, 19
model indexer, 81
model-driven engineering, 7
monitorability, 29
monpoly, 81
multi-rule, 15, 130

nested graph conditions, 14
non-definiteness window, 31

object constraint language, 82
operationalization, 16
overlapping intervals, 129

partial history encoding, 60

167

pattern matching, 13
projected answer set, 60
projected effective answer set, 61
property classes, 56

reactive query evaluation, 18
relations, 101
relevance window, 59
result of temporal generalized discrimination network, 48
RETE algorithm, 16
runtime model, 7
runtime model with history, 21
runtime verification, 28, 100

satisfaction computation, 25
satisfaction span, 24
satisfaction span set, 47
scalability, 3
simple graph query, 13
smart hospital system, 9
smart medical environment, 9
structural runtime model, 8
system behavior, 10
system context, 8

temporal generalized discrimination network, 41
temporal graph query, 24
temporal invalidity, 36
temporal query answer set, 27
temporal validity, 25
temporal validity generalized discrimination network, 48
terminal rule, 48
three-valued satisfaction check, 29
time point, 10
timed graph sequence, 13
typed attributed graph, 12
typed graph, 12
typed graph morphism, 12

168

	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Objectives and Contributions
	1.4 Plan for Fulfillment and Assessment of Objectives
	1.5 Outline

	2 Foundations
	2.1 Runtime Models
	2.1.1 Background
	2.1.2 Runtime Models in thisThesis
	2.1.3 History Representation Based on Runtime Models

	2.2 Graphs, Graph Queries, and Graph Transformation
	2.2.1 Typed Attributed Graphs
	2.2.2 Graph Queries
	2.2.3 Graph Transformation
	2.2.4 Query Operationalization via Graph Transformation
	2.2.5 Local Search and Incremental Evaluation

	2.3 Metric Temporal Graph Logic

	3 Runtime Model with History and Specification of Temporal Queries
	3.1 Runtime Model with History
	3.2 Query Language
	3.2.1 Lifespan of a Match
	3.2.2 Satisfaction Span and Temporal Validity
	3.2.3 Query Answer Set

	3.3 Querying an Unfinished History
	3.3.1 Runtime Monitoring with Temporal Queries
	3.3.2 Definite Satisfaction and Definite Falsification
	3.3.3 Definite Satisfaction Span and Definite Falsification Span
	3.3.4 Temporal Invalidity and Definite Answer Set

	3.4 Summary

	4 Querying Approach
	4.1 Operationalization
	4.1.1 Temporal Generalized Discrimination Network
	4.1.2 Amalgamated Marking Rules
	4.1.3 The Marking Rules Induced by Operators of MTGL
	4.1.4 TGDN Construction
	4.1.5 Obtaining the Temporal Validity
	4.1.6 TGDN for Definite Computations

	4.2 Query Evaluation
	4.2.1 Batch Query Evaluation
	4.2.2 Incremental Query Evaluation
	4.2.3 Preserving a High Degree of Incrementality

	4.3 Maintenance
	4.3.1 Discarding Irrelevant History from an RTMH
	4.3.2 Projected Answer Set
	4.3.3 Maintenance with Dynamic Sets of Queries
	4.3.4 Considerations

	4.4 Application Scenario: History-aware Self-Adaptation
	4.4.1 Self-adaptation Scenario for SHS

	4.5 Summary

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Timely Sepsis Treatment for the Smart Hospital System
	5.2.1 Input Logs
	5.2.2 Experiment Design
	5.2.3 Results

	5.3 Trend Detection for the Social Network Benchmark
	5.3.1 Input Logs
	5.3.2 Experiment Design
	5.3.3 Results

	5.4 Comparison to State-of-the-art
	5.4.1 Runtime Verification with MonPoly
	5.4.2 Indexing and Querying the History of an RTM with Hawk
	5.4.3 Query Specifications and Conducted Experiments
	5.4.4 Input Logs
	5.4.5 Experiment Design
	5.4.6 Results

	5.5 Discussion
	5.5.1 Fulfillment of Objective for Increased Scalability
	5.5.2 Advantages and Limitations
	5.5.3 Threats to Validity

	6 Related Work
	6.1 Foundations
	6.2 Reactive and Incremental Evaluation of Graph Queries
	6.3 Querying the History of an Evolving Structure
	6.4 Runtime Verification
	6.5 Combining Structural Queries with Complex Event Processing

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Technical Optimizations and Performance
	7.2.2 Sophisticated History-aware Self-Adaptation
	7.2.3 History-awareness and Temporal Queries for Systems of Systems

	 Bibliography
	A Technical Supplement
	A.1 Intervals
	A.2 Amalgamated Graph Transformation Rules
	A.3 Proofs
	a.3.1 Theorem 3.2.1: equality of satisfaction span and satisfaction computation
	a.3.2 Theorem 3.3.1: definite relations imply satisfaction relation over history
	a.3.3 Theorem 3.3.2: definite relations are equivalent to satisfaction relation over certain period of history
	a.3.4 Theorem 3.3.3: equality of definite spans and definite computations for satisfaction and falsification
	a.3.5 Lemma 4.1.1: Equality of satisfaction span set and TGDN result
	a.3.6 Lemma 4.1.2: equality of definite satisfaction and falsification span set and TGDN definite result
	a.3.7 Theorem 4.1.2: equality of TVGDN definite result and query definite answer set
	a.3.8 Theorem 4.3.1: equality of aggregation of projected answer sets over a sequence of pruned RTMH instances and a sequence of complete RTMH instances

	B Experimental Evaluation Supplement
	B.1 Implementation
	b.1.1 The InTempo Query Language
	b.1.2 The Events-to-Patterns Specification Language
	b.1.3 Operation Modes

	B.2 Smart Hospital System
	b.2.1 Log Synthesis
	b.2.2 E2P Specification for the SHS
	b.2.3 Queries in ITQL
	b.2.4 Formulas in MFOTL
	b.2.5 Queries in EOL

	B.3 Social Network Benchmark
	b.3.1 E2P Specification for the SNB
	b.3.2 Queries in ITQL

	C Publications
	 List of Figures
	 List of Tables
	 List of Listings
	 Acronyms
	 Index

