The Bow on a String

  • The interaction between a bowed string instrument and its player is conveyed by the bow, the vibrational properties of which can be measured either separately on the bow or during the bowing procedure. Here, two piezoelectric film sensors, made of a ferroelectret material, are installed on a violin bow, one sensor at the tip and one at the frog. With these sensors, a violin is played under normal conditions, and the signals are analysed. The features in the resulting spectrograms are identified as string harmonics and longitudinal bow-hair resonances. The bow-hair sections on both sides of the bow-string contact exhibit separate resonances which are observed as absorption dips in the spectra. Owing to the sensor positions at the bow-hair terminations, it can be inferred that the two bow-hair sections act as mutual vibration absorbers. From a regression of the observed resonances, the longitudinal bow-hair velocity can be obtained. With additional film sensors under the violin bridge, body vibrations were also detected providingThe interaction between a bowed string instrument and its player is conveyed by the bow, the vibrational properties of which can be measured either separately on the bow or during the bowing procedure. Here, two piezoelectric film sensors, made of a ferroelectret material, are installed on a violin bow, one sensor at the tip and one at the frog. With these sensors, a violin is played under normal conditions, and the signals are analysed. The features in the resulting spectrograms are identified as string harmonics and longitudinal bow-hair resonances. The bow-hair sections on both sides of the bow-string contact exhibit separate resonances which are observed as absorption dips in the spectra. Owing to the sensor positions at the bow-hair terminations, it can be inferred that the two bow-hair sections act as mutual vibration absorbers. From a regression of the observed resonances, the longitudinal bow-hair velocity can be obtained. With additional film sensors under the violin bridge, body vibrations were also detected providing further details of the coupling mechanisms.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gunnar GidionORCiD, Reimund GerhardORCiDGND
DOI:https://doi.org/10.3813/AAA.919174
ISSN:1610-1928
ISSN:1861-9959
Title of parent work (English):Acta Acustica united with Acustica
Subtitle (English):Bow Vibrations Detected with Ferroelectret Sensors
Publisher:Hirzel Verlag
Place of publishing:Stuttgart
Publication type:Article
Language:English
Date of first publication:2018/03/01
Publication year:2018
Release date:2022/01/14
Volume:104
Issue:2
Number of pages:8
First page:315
Last Page:322
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.