### Refine

#### Year of publication

#### Document Type

- Monograph/Edited Volume (121)
- Preprint (114)
- Article (83)
- Postprint (1)

#### Keywords

- elliptic operators (6)
- manifolds with singularities (6)
- Fredholm property (5)
- boundary value problems (5)
- index (5)
- pseudodifferential operators (5)
- Boundary value problems (4)
- relative index (4)
- 'eta' invariant (3)
- Atiyah-Bott condition (3)

We discuss the Cauchy problem for the Dolbeault cohomology in a domain of C n with data on a part of the boundary. In this setting we introduce the concept of a Carleman function which proves useful in the study of uniqueness. Apart from an abstract framework we show explicit Carleman formulas for the Dolbeault cohomology.

We consider a homogeneous pseudodifferential equation on a cylinder C = IR x X over a smooth compact closed manifold X whose symbol extends to a meromorphic function on the complex plane with values in the algebra of pseudodifferential operators over X. When assuming the symbol to be independent on the variable t element IR, we show an explicit formula for solutions of the equation. Namely, to each non-bijectivity point of the symbol in the complex plane there corresponds a finite-dimensional space of solutions, every solution being the residue of a meromorphic form manufactured from the inverse symbol. In particular, for differential equations we recover Euler's theorem on the exponential solutions. Our setting is model for the analysis on manifolds with conical points since C can be thought of as a 'stretched' manifold with conical points at t = -infinite and t = infinite.

We introduce a natural symmetry condition for a pseudodifferential operator on a manifold with cylindrical ends ensuring that the operator admits a doubling across the boundary. For such operators we prove an explicit index formula containing, apart from the Atiyah-Singer integral, a finite number of residues of the logarithmic derivative of the conormal symbol.

The index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points contains the Atiyah-Singer integral as well as two additional terms. One of the two is the 'eta' invariant defined by the conormal symbol, and the other term is explicitly expressed via the principal and subprincipal symbols of the operator at conical points. In the preceding paper we clarified the meaning of the additional terms for first-order differential operators. The aim of this paper is an explicit description of the contribution of a conical point for higher-order differential operators. We show that changing the origin in the complex plane reduces the entire contribution of the conical point to the shifted 'eta' invariant. In turn this latter is expressed in terms of the monodromy matrix for an ordinary differential equation defined by the conormal symbol.

For elliptic operators on manifolds with boundary, we define spectral boundary value problems, which generalize the Atiyah-Patodi-Singer problem to the case of nonhomogeneous boundary conditions, operators of arbitrary order, and nonself-adjoint conormal symbols. The Fredholm property is proved and equivalence with certain elliptic equations on manifolds with conical singularities is established.

We construct a theory of general boundary value problems for differential operators whose symbols do not necessarily satisfy the Atiyah-Bott condition [3] of vanishing of the corresponding obstruction. A condition for these problems to be Fredholm is introduced and the corresponding finiteness theorems are proved.

In the preceding paper we proved an explicit index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points. Apart from the Atiyah-Singer integral, it contains two additional terms, one of the two being the 'eta' invariant defined by the conormal symbol. In this paper we clarify the meaning of the additional terms for differential operators.

For general elliptic pseudodifferential operators on manifolds with singular points, we prove an algebraic index formula. In this formula the symbolic contributions from the interior and from the singular points are explicitly singled out. For two-dimensional manifolds, the interior contribution is reduced to the Atiyah-Singer integral over the cosphere bundle while two additional terms arise. The first of the two is one half of the 'eta' invariant associated to the conormal symbol of the operator at singular points. The second term is also completely determined by the conormal symbol. The example of the Cauchy-Riemann operator on the complex plane shows that all the three terms may be non-zero.

The paper contains the proof of the index formula for manifolds with conical points. For operators subject to an additional condition of spectral symmetry, the index is expressed as the sum of multiplicities of spectral points of the conormal symbol (indicial family) and the integral from the Atiyah-Singer form over the smooth part of the manifold. The obtained formula is illustrated by the example of the Euler operator on a two-dimensional manifold with conical singular point.

The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points.

The aim of this book is to develop the Lefschetz fixed point theory for elliptic complexes of pseudodifferential operators on manifolds with edges. The general Lefschetz theory contains the index theory as a special case, while the case to be studied is much more easier than the index problem. The main topics are: - The calculus of pseudodifferential operators on manifolds with edges, especially symbol structures (inner as well as edge symbols). - The concept of ellipticity, parametrix constructions, elliptic regularity in Sobolev spaces. - Hodge theory for elliptic complexes of pseudodifferential operators on manifolds with edges. - Development of the algebraic constructions for these complexes, such as homotopy, tensor products, duality. - A generalization of the fixed point formula of Atiyah and Bott for the case of simple fixed points. - Development of the fixed point formula also in the case of non-simple fixed points, provided that the complex consists of diferential operarators only. - Investigation of geometric complexes (such as, for instance, the de Rham complex and the Dolbeault complex). Results in this direction are desirable because of both purely mathe matical reasons and applications in natural sciences.