Refine
Year of publication
- 2023 (25)
- 2022 (116)
- 2021 (120)
- 2020 (165)
- 2019 (338)
- 2018 (326)
- 2017 (370)
- 2016 (291)
- 2015 (260)
- 2014 (249)
- 2013 (269)
- 2012 (261)
- 2011 (242)
- 2010 (161)
- 2009 (205)
- 2008 (118)
- 2007 (105)
- 2006 (161)
- 2005 (157)
- 2004 (178)
- 2003 (124)
- 2002 (97)
- 2001 (111)
- 2000 (121)
- 1999 (72)
- 1998 (106)
- 1997 (83)
- 1996 (66)
- 1995 (67)
- 1994 (50)
- 1993 (28)
- 1992 (6)
- 1991 (2)
Document Type
- Article (3452)
- Doctoral Thesis (987)
- Postprint (256)
- Review (126)
- Other (82)
- Conference Proceeding (52)
- Monograph/Edited Volume (50)
- Preprint (20)
- Habilitation Thesis (17)
- Part of Periodical (7)
Keywords
- Arabidopsis thaliana (53)
- climate change (39)
- Arabidopsis (38)
- biodiversity (28)
- Dictyostelium (26)
- ancient DNA (26)
- animal personality (19)
- evolution (18)
- functional traits (18)
- population dynamics (18)
Institute
- Institut für Biochemie und Biologie (5057) (remove)
Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal "movement ecology" (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data on movements of animals in the wild. These high-throughput wildlife tracking systems now allow more thorough investigation of variation among individuals and species across space and time, the nature of biological interactions, and behavioral responses to the environment. Movement ecology is rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks, providing improved opportunities for conservation and insights into the movements of wild animals, and their causes and consequences.
Induced point mutations are important genetic resources for their ability to create hypo- and hypermorphic alleles that are useful for understanding gene functions and breeding. However, such mutant populations have only been developed for a few temperate maize varieties, mainly B73 and W22, yet no tropical maize inbred lines have been mutagenized and made available to the public to date. We developed a novel Ethyl Methanesulfonate (EMS) induced mutation resource in maize comprising 2050 independent M2 mutant families in the elite tropical maize inbred ML10. By phenotypic screening, we showed that this population is of comparable quality with other mutagenized populations in maize. To illustrate the usefulness of this population for gene discovery, we performed rapid mapping-by-sequencing to clone a fasciated-ear mutant and identify a causal promoter deletion in ZmCLE7 (CLE7). Our mapping procedure does not require crossing to an unrelated parent, thus is suitable for mapping subtle traits and ones affected by heterosis. This first EMS population in tropical maize is expected to be very useful for the maize research community. Also, the EMS mutagenesis and rapid mapping-by-sequencing pipeline described here illustrate the power of performing forward genetics in diverse maize germplasms of choice, which can lead to novel gene discovery due to divergent genetic backgrounds.
The P22 tailspike endorhamnosidase confers the high specificity of bacteriophage P22 for some serogroups of Salmonella differing only slightly in their O-antigen polysaccharide. We used several biophysical methods to study the binding and hydrolysis of O-antigen fragments of different lengths by P22 tailspike protein. O-Antigen saccharides of defined length labeled with fluorophors could be purified with higher resolution than previously possible. Small amounts of naturally occurring variations of 0antigen fragments missing the nonreducing terminal galactose could be used to determine the contribution of this part to the free energy of binding to be similar to 7 kJ/mol. We were able to show via several independent lines of evidence that an unproductive binding mode is highly favored in binding over all other possible binding modes leading to hydrolysis. This is true even under circumstances under which the O-antigen fragment is long enough to be cleaved efficiently by the enzyme. The high-affinity unproductive binding mode results in a strong self-competitive inhibition in addition to product inhibition observed for this system. Self-competitive inhibition is observed for all substrates that have a free reducing end rhamnose. Naturally occurring O-antigen, while still attached to the bacterial outer membrane, does not have a free reducing end and therefore does not perform self-competitive inhibition.
No correlation between short term weight gain and lower leg length gain in healthy German children
(2020)
Background:
Length-for-age is considered the indicator of choice in monitoring the long-term impact of chronic nutritional deficiency. Aim: We hypothesized that short term increments of body weight cross-correlate with increments of the lower leg length.
Sample and methods:
We re-analyzed the association between weekly measurements of weight and of lower leg length in 34 healthy German children, aged 2.9-15.9 years. The data are a subset of measurements originally published in 1988 (Hermanussen et al. 1988a). As the growth measurements were often not equally spaced in time due to interposed holidays and illness, the incremental rates for weight and lower leg length were smoothed using spline functions. Autocorrelation and cross-correlation functions were calculated for weight increments and lower leg length increments.
Results:
Height and weight increments are pulsatile. Autocorrelations indicated that mini growth spurts occur at irregular intervals. Lack of cross-correlations between weight and lower leg length indicated that mini spurts in weight gain do not coincide with mini spurts in length gain even when considering lag times of up to 10 weeks. Short term changes of weight gain and lower leg length gain in healthy children show no temporal association.
Understanding the complexity of metabolic networks has implications for manipulation of their functions. The complexity of metabolic networks can be characterized by identifying multireaction dependencies that are challenging to determine due to the sheer number of combinations to consider. Here, we propose the concept of concordant complexes that captures multireaction dependencies and can be efficiently determined from the algebraic structure and operational constraints of metabolic networks. The concordant complexes imply the existence of concordance modules based on which the apparent complexity of 12 metabolic networks of organisms from all kingdoms of life can be reduced by at least 78%. A comparative analysis against an ensemble of randomized metabolic networks shows that the metabolic network of Escherichia coli contains fewer concordance modules and is, therefore, more tightly coordinated than expected by chance. Together, our findings demonstrate that metabolic networks are considerably simpler than what can be perceived from their structure alone.
A biosensor for phenolic compounds based on a chemically modified laccase from Coriolus hirsula immobilized on functionalized screen-printed carbon electrodes (SPCEs) was achieved. Different enzyme modifications and immobilization strategies were analyzed. The electrochemical response of the immobilized laccase on SPCEs modified with carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNT) was the highest when laccase was aminated prior to the adsorption onto the working electrode. The developed lactase biosensor sensitivity toward different phenolic compounds was assessed to determine the biosensor response with several phenolic compounds. The highest response was obtained for ABTS with a saturation value of I-max = 27.94 mu A. The electrocatalytic efficiency (I-max/K-m(app)) was the highest for ABTS (5588 mu A mu M-1) followed by syringaldazine (3014 mu A.mu M-1). The sensors were considerably stable, whereby 99.5, 82 and 77% of the catalytic response using catechol as substrate was retained after 4, 8 and 10 successive cycles of reuse respectively, with response time average of 5 s for 12 cycles. No loss of activity was observed after 20 days of storage.
Porous three-dimensional (3D) scaffolds are promising treatment options in regenerative medicine. Supercritical and dense-phase fluid technologies provide an attractive alternative to solvent-based scaffold fabrication methods. In this work, we report on the fabrication of poly-etheresterurethane (PPDO-PCL) based porous scaffolds with tailorable pore size, porosity, and pore interconnectivity by using supercritical CO2(scCO(2)) fluid-foaming. The influence of the processing parameters such as soaking time, soaking temperature and depressurization on porosity, pore size, and interconnectivity of the foams were investigated. The average pore diameter could be varied between 100-800 mu m along with a porosity in the range from (19 +/- 3 to 61 +/- 6)% and interconnectivity of up to 82%. To demonstrate their applicability as scaffold materials, selected foams were sterilized via ethylene oxide sterilization. They showed negligible cytotoxicity in tests according to DIN EN ISO 10993-5 and 10993-12 using L929 cells. The study demonstrated that the pore size, porosity and the interconnectivity of this multi-phase semicrystalline polymer could be tailored by careful control of the processing parameters during the scCO(2)foaming process. In this way, PPDO-PCL scaffolds with high porosity and interconnectivity are potential candidate materials for regenerative treatment options.
Following the extinction of dinosaurs, the great adaptive radiation of mammals occurred, giving rise to an astonishing ecological and phenotypic diversity of mammalian species. Even closely related species often inhabit vastly different habitats, where they encounter diverse environmental challenges and are exposed to different evolutionary pressures. As a response, mammals evolved various adaptive phenotypes over time, such as morphological, physiological and behavioural ones. Mammalian genomes vary in their content and structure and this variation represents the molecular mechanism for the long-term evolution of phenotypic variation. However, understanding this molecular basis of adaptive phenotypic variation is usually not straightforward.
The recent development of sequencing technologies and bioinformatics tools has enabled a better insight into mammalian genomes. Through these advances, it was acknowledged that mammalian genomes differ more, both within and between species, as a consequence of structural variation compared to single-nucleotide differences. Structural variant types investigated in this thesis - such as deletion, duplication, inversion and insertion, represent a change in the structure of the genome, impacting the size, copy number, orientation and content of DNA sequences. Unlike short variants, structural variants can span multiple genes. They can alter gene dosage, and cause notable gene expression differences and subsequently phenotypic differences. Thus, they can lead to a more dramatic effect on the fitness (reproductive success) of individuals, local adaptation of populations and speciation.
In this thesis, I investigated and evaluated the potential functional effect of structural variations on the genomes of mustelid species. To detect the genomic regions associated with phenotypic variation I assembled the first reference genome of the tayra (Eira barbara) relying on linked-read sequencing technology to achieve a high level of genome completeness important for reliable structural variant discovery. I then set up a bioinformatics pipeline to conduct a comparative genomic analysis and explore variation between mustelid species living in different environments. I found numerous genes associated with species-specific phenotypes related to diet, body condition and reproduction among others, to be impacted by structural variants.
Furthermore, I investigated the effects of artificial selection on structural variants in mice selected for high fertility, increased body mass and high endurance. Through selective breeding of each mouse line, the desired phenotypes have spread within these populations, while maintaining structural variants specific to each line. In comparison to the control line, the litter size has doubled in the fertility lines, individuals in the high body mass lines have become considerably larger, and mice selected for treadmill performance covered substantially more distance. Structural variants were found in higher numbers in these trait-selected lines than in the control line when compared to the mouse reference genome. Moreover, we have found twice as many structural variants spanning protein-coding genes (specific to each line) in trait-selected lines. Several of these variants affect genes associated with selected phenotypic traits. These results imply that structural variation does indeed contribute to the evolution of the selected phenotypes and is heritable.
Finally, I suggest a set of critical metrics of genomic data that should be considered for a stringent structural variation analysis as comparative genomic studies strongly rely on the contiguity and completeness of genome assemblies. Because most of the available data used to represent reference genomes of mammalian species is generated using short-read sequencing technologies, we may have incomplete knowledge of genomic features. Therefore, a cautious structural variation analysis is required to minimize the effect of technical constraints.
The impact of structural variants on the adaptive evolution of mammalian genomes is slowly gaining more focus but it is still incorporated in only a small number of population studies. In my thesis, I advocate the inclusion of structural variants in studies of genomic diversity for a more comprehensive insight into genomic variation within and between species, and its effect on adaptive evolution.
A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.
A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.
Heterostyly represents a fascinating adaptation to promote outbreeding in plants that evolved multiple times independently. While L-morph individuals form flowers with long styles, short anthers, and small pollen grains, S-morph individuals have flowers with short styles, long anthers, and large pollen grains. The difference between the morphs is controlled by an S-locus "supergene" consisting of several distinct genes that determine different traits of the syndrome and are held together, because recombination between them is suppressed. In Primula, the S locus is a roughly 300-kb hemizygous region containing five predicted genes. However, with one exception, their roles remain unclear, as does the evolutionary buildup of the S locus. Here we demonstrate that the MADS-box GLOBOSA2 (GLO2) gene at the S locus determines anther position. In Primula forbesii S-morph plants, GLO2 promotes growth by cell expansion in the fused tube of petals and stamen filaments beneath the anther insertion point; by contrast, neither pollen size nor male incompatibility is affected by GLO2 activity. The paralogue GLO1, from which GLO2 arose by duplication, has maintained the ancestral B-class function in specifying petal and stamen identity, indicating that GLO2 underwent neofunctionalization, likely at the level of the encoded protein. Genetic mapping and phylogenetic analysis indicate that the duplications giving rise to the style-length-determining gene CYP734A50 and to GLO2 occurred sequentially, with the CYP734A50 duplication likely the first. Together these results provide the most detailed insight into the assembly of a plant supergene yet and have important implications for the evolution of heterostyly.
The current trends of crop yield improvements are not expected to meet the projected rise in demand. Genomic selection uses molecular markers and machine learning to identify superior genotypes with improved traits, such as growth. Plant growth directly depends on rates of metabolic reactions which transform nutrients into the building blocks of biomass. Here, we predict growth of Arabidopsis thaliana accessions by employing genomic prediction of reaction rates estimated from accession-specific metabolic models. We demonstrate that, comparing to classical genomic selection on the available data sets for 67 accessions, our approach improves the prediction accuracy for growth within and across nitrogen environments by 32.6% and 51.4%, respectively, and from optimal nitrogen to low carbon environment by 50.4%. Therefore, integration of molecular markers into metabolic models offers an approach to predict traits directly related to metabolism, and its usefulness in breeding can be examined by gathering matching datasets in crops. An increase in genomic selection (GS) accuracy can accelerate genetic gain by shortening the breeding cycles. Here, the authors introduce a network-based GS method that uses metabolic models and improves the prediction accuracy of Arabidopsis growth within and across environments.
Recent research has linked sphingolipid (SL) metabolism with cystic fibrosis transmembrane conductance regulator (CFTR) activity, affecting bioactive lipid mediator sphingosine-1-phosphate (S1P). We hypothesize that loss of CFTR function in cystic fibrosis (CF) patients influenced plasma S1P levels. Total and unbound plasma S1P levels were measured in 20 lung-transplanted adult CF patients and 20 healthy controls by mass spectrometry and enzyme-linked immunosorbent assay (ELISA). S1P levels were correlated with CFTR genotype, routine laboratory parameters, lung function and pathogen colonization, and clinical symptoms. Compared to controls, CF patients showed lower unbound plasma S1P, whereas total S1P levels did not differ. A positive correlation of total and unbound S1P levels was found in healthy controls, but not in CF patients. Higher unbound S1P levels were measured in Delta F508-homozygous compared to Delta F508-heterozygous CF patients (p = 0.038), accompanied by higher levels of HDL in Delta F508-heterozygous patients. Gastrointestinal symptoms were more common in Delta F508 heterozygotes compared to Delta F508 homozygotes. This is the first clinical study linking plasma S1P levels with CFTR function and clinical presentation in adult CF patients. Given the emerging role of immunonutrition in CF, our study might pave the way for using S1P as a novel biomarker and nutritional target in CF.
Trends in growth and developmental tempo in boys aged 7 to 18 years between 1966 and 2012 in Poland
(2020)
Objectives:
To assess trends in growth in different developmental periods and trends in developmental tempo in Polish boys between 1966 and 2012.
Methods:
Data on 34 828 boys aged 7 to 18 years were collected during Polish Anthropological Surveys conducted in 1966, 1978, 1988, and 2012. Biological parameters, related to onset of adolescent growth spurt (OGS) and peak height velocity (PHV), were derived from a Preece-Baines 1 model (PB1). Childhood (height at 7 years of age), pre-adolescent (height at OGS) and adolescent growth (adult height minus height at OGS) were identified.
Results:
Positive secular trend between 1966 and 2012 in adult height accounted for, on average, 1.5 cm/decade, with varying intensity between the Surveys. Decline in both age at OGS and APHV between 1966 and 2012 (1.5 and 1.4 years, respectively) indicated an acceleration in developmental tempo, on average, by 0.3 year/decade. Increases in the contribution to the trend in adult height gained during growth in particular developmental periods between 1966 and 2012 were as followed-childhood: 0.6%, pre-adolescent growth: -3.1%, adolescent growth: 3.1%.
Conclusions:
Secular trend in developmental tempo and growth among boys reflects changes in living conditions and socio-political aspirations in Poland during nearly 50 years. Acceleration in tempo is already visible at age at OGS, whereas the trend in adult height occurs largely during adolescence, pointing to different regulation of developmental tempo and growth in body height. This finding emphasizes the importance of extending public health intervention into children's growth up until adolescence.
Photosynthesis converts light into metabolic energy which fuels plant growth. In nature, many factors influence light availability for photosynthesis on different time scales, from shading by leaves within seconds up to seasonal changes over months. Variability of light energy supply for photosynthesis can limit a plant´s biomass accumulation. Plants have evolved multiple strategies to cope with strongly fluctuation light (FL). These range from long-term optimization of leaf morphology and physiology and levels of pigments and proteins in a process called light acclimation, to rapid changes in protein activity within seconds. Therefore, uncovering how plants deal with FL on different time scales may provide key ideas for improving crop yield. Photosynthesis is not an isolated process but tightly integrates with metabolism through mutual regulatory interactions. We thus require mechanistic understanding of how long-term light acclimation shapes both, dynamic photosynthesis and its interactions with downstream metabolism. To approach this, we analyzed the influence of growth light on i) the function of known rapid photosynthesis regulators KEA3 and VCCN1 in dynamic photosynthesis (Chapter 2-3) and ii) the interconnection of photosynthesis with photorespiration (PR; Chapter 4).
We approached topic (i) by quantifying the effect of different growth light regimes on photosynthesis and photoprotection by using kea3 and vccn1 mutants. Firstly, we found that, besides photosynthetic capacity, the activities of VCCN1 and KEA3 during a sudden high light phase also correlated with growth light intensity. This finding suggests regulation of both proteins by the capacity of downstream metabolism. Secondly, we showed that KEA3 accelerated photoprotective non-photochemical quenching (NPQ) kinetics in two ways: Directly via downregulating the lumen proton concentration and thereby de-activating pH-dependent NPQ, and indirectly via suppressing accumulation of the photoprotective pigment zeaxanthin.
For topic (ii), we analyzed the role of PR, a process which recycles a toxic byproduct of the carbon fixation reactions, in metabolic flexibility in a dynamically changing light environment. For this we employed the mutants hpr1 and ggt1 with a partial block in PR. We characterized the function of PR during light acclimation by tracking molecular and physiological changes of the two mutants. Our data, in contrast to previous reports, disprove a generally stronger physiological relevance of PR under dynamic light conditions. Additionally, the two different mutants showed pronounced and distinct metabolic changes during acclimation to a condition inducing higher photosynthetic activity. This underlines that PR cannot be regarded purely as a cyclic detoxification pathway for 2PG. Instead, PR is highly interconnected with plant metabolism, with GGT1 and HPR1 representing distinct metabolic modulators.
In summary, the presented work provides further insight into how energetic and metabolic flexibility is ensured by short-term regulators and PR during long-term light acclimation.
Biostimulant SuperFifty based molecular priming to increase plant strength and stress tolerance
(2023)
Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.
Dictyostelium amoebae perform a semi-closed mitosis, in which the nuclear envelope is fenestrated at the insertion sites of the mitotic centrosomes and around the central spindle during karyokinesis. During late telophase the centrosome relocates to the cytoplasmic side of the nucleus, the central spindle disassembles and the nuclear fenestrae become closed. Our data indicate that Dictyostelium spastin (DdSpastin) is a microtubule-binding and severing type I membrane protein that plays a role in this process. Its mitotic localization is in agreement with a requirement for the removal of microtubules that would hinder closure of the fenestrae. Furthermore, DdSpastin interacts with the HeH/ LEM-family protein Src1 in BioID analyses as well as the inner nuclear membrane protein Sun1, and shows subcellular co-localizations with Src1, Sun1, the ESCRT component CHMP7 and the IST1-like protein filactin, suggesting that the principal pathway of mitotic nuclear envelope remodeling is conserved between animals and Dictyostelium amoebae.
Background
The Arabidopsis CONSTITUTIVE EXPRESSER of PATHOGENESIS-RELATED GENES 5 (CPR5) has recently been shown to play a role in gating as part of the nuclear pore complex (NPC). Mutations in CPR5 cause multiple defects, including aberrant trichomes, reduced ploidy levels, reduced growth and enhanced resistance to bacterial and fungal pathogens. The pleiotropic nature of cpr5 mutations implicates that the CPR5 protein affects multiple pathways. However, little is known about the structural features that allow CPR5 to affect the different pathways.
Results
Our in silico studies suggest that in addition to three clusters of putative nuclear localization signals and four or five transmembrane domains, CPR5 contains two putative alternative translation start sites. To test the role of the methionine-encoding nucleotides implicated in those sites, metCPR5 cDNAs, in which the relevant nucleotides were changed to encode glutamine, were fused to the CPR5 native promoter and the constructs transformed to cpr5-2 plants to complement cpr5-compromised phenotypes. The control and metCPR5 constructs were able to complement all cpr5 phenotypes, although the extent of complementation depended on the specific complementing plant lines. Remarkably, plants transformed with metCPR5 constructs showed larger leaves and displayed reduced resistance when challenged to Pseudomonas syringae pv Pst DC3000, as compared to control plants. Thus, the methionine-encoding nucleotides regulate growth and resistance. We propose that structural features of the CPR5 N-terminus are implicated in selective gating of proteins involved in regulating the balance between growth and resistance.
Conclusion
Plants need to carefully balance the amount of resources used for growth and resistance. The Arabidopsis CPR5 protein regulates plant growth and immunity. Here we show that N-terminal features of CPR5 are involved in the regulation of the balance between growth and resistance. These findings may benefit efforts to improve plant yield, while maintaining optimal levels of disease resistance.