Refine
Year of publication
- 2022 (217)
- 2021 (999)
- 2020 (1273)
- 2019 (2466)
- 2018 (2770)
- 2017 (2295)
- 2016 (2332)
- 2015 (2131)
- 2014 (1882)
- 2013 (2108)
- 2012 (1986)
- 2011 (2039)
- 2010 (1428)
- 2009 (1823)
- 2008 (1355)
- 2007 (1396)
- 2006 (1800)
- 2005 (1956)
- 2004 (2019)
- 2003 (1552)
- 2002 (1354)
- 2001 (1424)
- 2000 (1684)
- 1999 (1852)
- 1998 (1690)
- 1997 (1541)
- 1996 (1557)
- 1995 (1473)
- 1994 (1031)
- 1993 (405)
- 1992 (255)
- 1991 (169)
- 1990 (16)
- 1989 (28)
- 1988 (22)
- 1987 (23)
- 1986 (16)
- 1985 (12)
- 1984 (15)
- 1983 (31)
- 1982 (10)
- 1981 (9)
- 1980 (10)
- 1979 (15)
- 1978 (9)
- 1977 (12)
- 1976 (7)
- 1975 (3)
- 1974 (2)
- 1973 (2)
- 1972 (2)
- 1971 (2)
- 1970 (1)
- 1958 (1)
Document Type
- Article (31096)
- Doctoral Thesis (5947)
- Monograph/Edited Volume (5343)
- Postprint (2920)
- Review (2116)
- Other (762)
- Preprint (566)
- Conference Proceeding (432)
- Part of Periodical (425)
- Part of a Book (411)
Language
- English (25825)
- German (23804)
- Spanish (334)
- French (319)
- Russian (108)
- Italian (105)
- Multiple languages (65)
- Polish (24)
- Hebrew (21)
- Portuguese (21)
Keywords
- Germany (163)
- Deutschland (122)
- climate change (122)
- Patholinguistik (71)
- patholinguistics (71)
- Sprachtherapie (70)
- European Union (69)
- morphology (66)
- Europäische Union (64)
- German (62)
Institute
- Institut für Biochemie und Biologie (4797)
- Institut für Physik und Astronomie (4796)
- Institut für Geowissenschaften (3177)
- Institut für Chemie (3096)
- Wirtschaftswissenschaften (2502)
- Historisches Institut (2239)
- Department Psychologie (2102)
- Institut für Romanistik (2011)
- Institut für Mathematik (1986)
- Sozialwissenschaften (1816)
Latein für Jurastudierende
(2022)
Wahrend das nationale und das europaische Wettbewerbsrecht seit vielen Jahrzehnten eine differenzierte Regelung und wissenschaftliche Durchdringung erfahren haben, ist ein vergleichbarer wettbewerbsrechtlicher Normenbestand auf internationaler Ebene nicht zu verzeichnen. Diese Dissertation greift diese Forschungslucke auf und pladiert fur die Schaffung eines Internationalen multilateralen Wettbewerbsrechts.
Dabei wird der Bestand an hard-law und soft-law untersucht und als Ergebnis gefordert, neue multilaterale Wettbewerbsregelungen zu entwerfen. In institutioneller Hinsicht ist zu fragen, innerhalb welcher internationaler Organisation dies sinnvoll erfolgen kann. Insgesamt unternimmt die Dissertation den Versuch, mogliche Konturen einer globalen Wettbewerbsrechtsordnung aufzuzeigen und vertieft zu begrunden.
Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.
Background: The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results: We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions: Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.
Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite
(2017)
This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.
Along a subduction zone, great megathrust earthquakes recur either after long seismic gaps lasting several decades to centuries or over much shorter periods lasting hours to a few years when cascading successions of earthquakes rupture nearby segments of the fault. We analyze a decade of continuous Global Positioning System observations along the South American continent to estimate changes in deformation rates between the 2010 Maule (M8.8) and 2015 Illapel (M8.3) Chilean earthquakes. We find that surface velocities increased after the 2010 earthquake, in response to continental-scale viscoelastic mantle relaxation and to regional-scale increased degree of interplate locking. We propose that increased locking occurs transiently during a super-interseismic phase in segments adjacent to a megathrust rupture, responding to bending of both plates caused by coseismic slip and subsequent afterslip. Enhanced strain rates during a super-interseismic phase may therefore bring a megathrust segment closer to failure and possibly triggered the 2015 event.
Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze (MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings.
In this paper we present a Bayesian framework for interpolating data in a reproducing kernel Hilbert space associated with a random subdivision scheme, where not only approximations of the values of a function at some missing points can be obtained, but also uncertainty estimates for such predicted values. This random scheme generalizes the usual subdivision by taking into account, at each level, some uncertainty given in terms of suitably scaled noise sequences of i.i.d. Gaussian random variables with zero mean and given variance, and generating, in the limit, a Gaussian process whose correlation structure is characterized and used for computing realizations of the conditional posterior distribution. The hierarchical nature of the procedure may be exploited to reduce the computational cost compared to standard techniques in the case where many prediction points need to be considered.
In many laser based ionization techniques with a subsequent drift time separation, the laser pulse generating the ions is considered as the start time to. Therefore, an accurate temporal definition of this event is crucial for the resolution of the experiments. In this contribution, the laser induced plume dynamics of liquids evaporating into atmospheric pressure are visualized for two distinctively different laser pulse widths, Delta t = 6 nanoseconds and Delta tau = 280 microseconds. For ns-pulses the expansion of the generated vapour against atmospheric pressure is found to lead to turbulences inside the gas phase. This results in spatial and temporal broadening of the nascent clouds. A more equilibrated expansion, without artificial smearing of the temporal resolution can, in contrast, be observed to follow mu s-pulse excitation. This leads to the counterintuitive finding that longer laser pulses results in an increased temporal vapour formation definition. To examine if this fume expansion also eventually results in a better definition of ion formation, the nascent vapour plumes were expanded into a linear drift tube ion mobility spectrometer (IMS). This time resolved detection of ion formation corroborates the temporal broadening caused by collisional impeding of the supersonic expansion at atmospheric pressure and the overall better defined ion formation by evaporation with long laser pulses. A direct comparison of the observed results strongly suggests the coexistence of two individual ion formation mechanisms that can be specifically addressed by the use of appropriate laser sources.
Distributed applications are hard to debug because timing-dependent network communication is a source of non-deterministic behavior. Current approaches to debug non deterministic failures include post-mortem debugging as well as record and replay. However, the first impairs system performance to gather data, whereas the latter requires developers to understand the timing-dependent communication at a lower level of abstraction than they develop at. Furthermore, both approaches require intrusive core library modifications to gather data from live systems. In this paper, we present the Peek-At-Talk debugger for investigating non-deterministic failures with low overhead in a systematic, top-down method, with a particular focus on tool-building issues in the following areas: First, we show how our debugging framework Path Tools guides developers from failures to their root causes and gathers run-time data with low overhead. Second, we present Peek-At-Talk, an extension to our Path Tools framework to record non-deterministic communication and refine behavioral data that connects source code with network events. Finally, we scope changes to the core library to record network communication without impacting other network applications.
Atmospheric transport is an understudied mechanism for leaf wax hydrogen isotope applications that contributes to mobilizing and depositing these compounds on the surface of the Earth. While previous efforts have identified the importance of atmospheric leaf wax deposition in remote marine locations, the processes are not well constrained on land in temperate latitudes where lakes are common and sedimentary leaf wax hydrogen isotope values are an attractive tool for understanding past precipitation changes. This work presents results from a field study that was conducted in 2010 and 2011 at Hainich National Park, Germany in order to evaluate the quantity and sources of leaf waxes in the atmosphere. Aerosols were sampled at approximately weekly intervals inside the forest canopy, and n-alkane distributions and hydrogen isotope values were compared with those from major tree species surrounding the sampling site. Despite sampling in what was expected to be a major production center, the distribution and hydrogen isotope values of atmospheric n-alkanes bore little resemblance to those of the local vegetation. Comparison with local meteorological data and to 10-day and 36-h back air mass trajectories indicated shifting effects of winds and temperature, and that mesoscale transport processes were more important than longrange mechanisms. Back trajectories also highlighted source effects, with easterly winds coinciding with relatively lower leaf wax hydrogen isotope values from more continental regions. These results suggest that leaf wax aerosols average over spatial scales that exceed typical surface catchment areas for small lake systems, even in forested areas, yet that the area over which these compounds are derived is still relatively regional. Depositional fluxes were also estimated in order to assess the potential importance of atmospheric transport to sedimentary archives. Although difficult to constrain, these estimates suggest that atmospheric deposition may be non-negligible for lake systems in cases where inputs from rivers or surface runoff are limited. Together, these observations provide new insights on how leaf waxes from different sources are integrated during aeolian transport and the spatial scales over which these processes occur.
Sensitivity and identifiability analyses are common diagnostic tools to address over-parametrization in complex environmental models, but a combined application of the two analyses is rarely conducted. In this study, we performed a temporal global sensitivity analysis using the variance-based method of Sobol’ and a temporal identifiability analysis of model parameters using the dynamic identifiability method (DYNIA). We discuss the relationship between the two analyses with a focus on parameter identification and output uncertainty reduction. The hydrological model HydroGeoSphere was used to simulate daily evapotranspiration, water content, and seepage at the lysimeter scale. We found that identifiability of a parameter does not necessarily reduce output uncertainty. It was also found that the information from the main and total effects (main Sobol' sensitivity indices) is required to allow uncertainty reduction in the model output. Overall, the study highlights the role of combined temporal diagnostic tools for improving our understanding of model behavior.
We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L-3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. We propose that 2p3d RIXS at the Ni L-3-edge can be utilized to quantify covalency in Ni complexes without the use of external references or simulations.
Background: Self-harm is highly prevalent in adolescence, often serving an emotion regulation function. Social stressors such as bullying are associated with self-harm. The neurobiological background of the relationship between social stressors and self-harm needs to be further understood to inform prevention and therapy. Methods: Participants were members of an epidemiological cohort study. 130 female participants underwent the Trier Social Stress Test (TSST) at age 19. Of them, 21 reported a history of self-harm as assessed by the Youth Self Report. Psychiatric diagnoses were recorded. Results: Participants with a history of self-harm showed significantly lower blood cortisol levels throughout the TSST. Early psychosocial adversity did not significantly differ between groups with and without self-harm, with self-harming participants reporting more childhood adversities. Conclusion: These results add to the limited field of studies showing an altered HPA axis activity in females with self-harm. Future studies need to address the causal mechanisms behind this association.
Das vergessene Gedenken
(2022)
Seit Aufstellung der Bundeswehr 1955 verloren über 3300 Soldaten und Soldatinnen ihr Leben im Dienst. Nur eine kleine Minderheit von ihnen fiel während des Kampfeinsatzes in Afghanistan. Die weitaus meisten Soldaten starben bei Unfällen. Ihnen hat die Bundeswehr lange das öffentliche Gedenken verweigert.
Erst mit Beginn des Afghanistan-Einsatzes 2002 setzte letztlich ein Umdenken ein, das in der Einweihung des Berliner Ehrenmales der Bundeswehr 2009 seinen vorläufigen Höhepunkt findet. Seitdem gedenkt die Bundeswehr offiziell und öffentlich ihrer toten Soldaten.
Aber warum verweigerte die Bundeswehr ihren Toten so lange ein öffentlich sichtbares und dauerhaftes Gedenken?
Julia Katharina Nordmann beleuchtet die komplexen Ursachen für diesen Umgang der Bundeswehr mit ihren Toten. Und sie rekonstruiert den langen und mühsamen Prozess, der zur Ausbildung einer Gedenkkultur geführt hat. Einer Gedenkkultur, die heute in vielfältiger Weise die Toten der Bundeswehr würdigt.
The present-day vegetation in the tropics is mainly characterized by forests worldwide except in tropical East Africa, where forests only occur as patches at the coast and in the uplands. These forest patches result from the peculiar aridity that is linked to the uplift of the region during the Late Cenozoic. The Late Cenozoic vegetation history of East Africa is of particular interest as it has set the scene for the contemporary events in mammal and hominin evolution. In this study, we investigate the conditions under which these forest patches could have been connected, and a previous continuous forest belt could have extended and fragmented. We apply a dynamic vegetation model with a set of climatic scenarios in which we systematically alter the present-day environmental conditions such that they would be more favourable for a continuous forest belt in tropical East Africa. We consider varying environmental factors, namely temperature, precipitation and atmospheric CO2 concentrations. Our results show that all of these variables play a significant role in supporting the forest biomes and a continuous forest belt could have occurred under certain combinations of these settings. With our current knowledge of the palaeoenvironmental history of East Africa, it is likely that the region hosted these conditions during the Late Cenozoic. Recent improvements on environmental hypotheses of hominin evolution highlight the role of periods of short and extreme climate variability during the Late Cenozoic specific to East Africa in driving evolution. Our results elucidate how the forest biomes of East Africa can appear and disappear under fluctuating environmental conditions and demonstrate how this climate variability might be recognized on the biosphere level.
Absorption Tails of Donor
(2017)
In disordered organic semiconductors, the transfer of a rather localized charge carrier from one site to another triggers a deformation of the molecular structure quantified by the intramolecular relaxation energy. A similar structural relaxation occurs upon population of intermolecular charge-transfer (CT) states formed at organic electron donor (D)-acceptor (A) interfaces. Weak CT absorption bands for D A complexes occur at photon energies below the optical gaps of both the donors and the C-60 acceptor as a result of optical transitions from the neutral ground state to the ionic CT state. In this work, we show that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of such CT absorption bands. This allows us to extract values for the relaxation energy related to the geometry change from neutral to ionic CT complexes. Experimental values for the relaxation energies of 20 D:C-60 CT complexes correlate with values calculated within density functional theory. These results provide an experimental method for determining the polaron relaxation energy in solid-state organic D-A blends and show the importance of a reduced relaxation energy, which we introduce to characterize thermally activated CT processes.
Background: Depressed mood is prevalent during pregnancy, with accumulating evidence suggesting an impact on developmental outcome in the offspring. However, the long-term effects of prenatal maternal depression regarding internalizing psychopathology in the offspring are as yet unclear. Results: In n=85 young adults exposed to prenatal maternal depressed mood, no significantly higher risk for a diagnosis of depressive disorder was observed. However, they reported significantly lower levels of depressive symptoms. This association was especially pronounced when prenatal maternal depressed mood was present during the first trimester of pregnancy and when maternal mood was depressed pre- as well as postnatally. At an uncorrected level only, prenatal maternal depressed mood was associated with decreased amygdala volume. Limitations: Prenatal maternal depressed mood was not assessed during pregnancy, but shortly after childbirth. No diagnoses of maternal clinical depression during pregnancy were available. Conclusions: Self-reported depressive symptoms do not imply increased, but rather decreased symptom levels in young adults who were exposed to prenatal maternal depressed mood. A long-term perspective may be important when considering consequences of prenatal risk factors.
The African Humid Period (AHP) between similar to 15 and 5.5 cal. kyr BP caused major environmental change in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive (similar to 2150 km(2)), deep (similar to 300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta provide insights into the lake-level history and how erosion rates changed during this time, as revealed by delta-volume estimates and the concentration of cosmogenic Be-10 in fluvial sand. Erosion rates derived from delta-volume estimates range from 0.019 to 0.03 mm yr(-1). Be-10-derived paleo-erosion rates at similar to 11.8 cal. kyr BP ranged from 0.035 to 0.086 mm yr(-1), and were 2.7 to 6.6 times faster than at present. In contrast, at similar to 8.7 cal. kyr BP, erosion rates were only 1.8 times faster than at present. Because Be-10-derived erosion rates integrate over several millennia; we modeled the erosion-rate history that best explains the 10Be data using established non-linear equations that describe in situ cosmogenic isotope production and decay. Two models with different temporal constraints (15-6.7 and 12-6.7 kyr) suggest erosion rates that were 25 to 300 times higher than the initial erosion rate (pre-delta formation). That pulse of high erosion rates was short (similar to 4 kyr or less) and must have been followed by a rapid decrease in rates while climate remained humid to reach the modern Be-10-based erosion rate of,similar to 0.013 mm yr(-1). Our simulations also flag the two highest Be-10-derived erosion rates at 11.8 kyr BP related to nonuniform catchment erosion. These changes in erosion rates and processes during the AHP may reflect a strong increase in precipitation, runoff, and erosivity at the arid-to-humid transition either at 15 or similar to 12 cal. kyr BP, before the landscape stabilized again, possibly due to increased soil production and denser vegetation.
We study differential cohomology on categories of globally hyperbolic Lorentzian manifolds. The Lorentzian metric allows us to define a natural transformation whose kernel generalizes Maxwell's equations and fits into a restriction of the fundamental exact sequences of differential cohomology. We consider smooth Pontryagin duals of differential cohomology groups, which are subgroups of the character groups. We prove that these groups fit into smooth duals of the fundamental exact sequences of differential cohomology and equip them with a natural presymplectic structure derived from a generalized Maxwell Lagrangian. The resulting presymplectic Abelian groups are quantized using the CCR-functor, which yields a covariant functor from our categories of globally hyperbolic Lorentzian manifolds to the category of C∗-algebras. We prove that this functor satisfies the causality and time-slice axioms of locally covariant quantum field theory, but that it violates the locality axiom. We show that this violation is precisely due to the fact that our functor has topological subfunctors describing the Pontryagin duals of certain singular cohomology groups. As a byproduct, we develop a Fréchet–Lie group structure on differential cohomology groups.