Refine
Year of publication
Document Type
- Article (651)
- Doctoral Thesis (202)
- Monograph/Edited Volume (135)
- Other (27)
- Conference Proceeding (19)
- Part of a Book (12)
- Master's Thesis (11)
- Postprint (10)
- Preprint (5)
- Habilitation Thesis (1)
Keywords
- Informatik (18)
- Didaktik (15)
- Ausbildung (13)
- Hochschuldidaktik (13)
- answer set programming (12)
- Answer Set Programming (9)
- Answer set programming (9)
- E-Learning (8)
- Maschinelles Lernen (7)
- Antwortmengenprogrammierung (6)
Institute
- Institut für Informatik und Computational Science (1074) (remove)
We introduce a new measure of descriptional complexity on finite automata, called the number of active states. Roughly speaking, the number of active states of an automaton A on input w counts the number of different states visited during the most economic computation of the automaton A for the word w. This concept generalizes to finite automata and regular languages in a straightforward way. We show that the number of active states of both finite automata and regular languages is computable, even with respect to nondeterministic finite automata. We further compare the number of active states to related measures for regular languages. In particular, we show incomparability to the radius of regular languages and that the difference between the number of active states and the total number of states needed in finite automata for a regular language can be of exponential order.
User Experience (UX) describes the holistic experience of a user before, during, and after interaction with a platform, product, or service. UX adds value and attraction to their sole functionality and is therefore highly relevant for firms. The increased interest in UX has produced a vast amount of scholarly research since 1983. The research field is, therefore, complex and scattered. Conducting a bibliometric analysis, we aim at structuring the field quantitatively and rather abstractly. We employed citation analyses, co-citation analyses, and content analyses to evaluate productivity and impact of extant research. We suggest that future research should focus more on business and management related topics.
Use of a standard non-rad-hard digital cell library in the rad-hard design can be a cost-effective solution for space applications. In this paper we demonstrate how a standard non-rad-hard flip-flop, as one of the most vulnerable digital cells, can be converted into a rad-hard flip-flop without modifying its internal structure. We present five variants of a Triple Modular Redundancy (TMR) flip-flop: baseline TMR flip-flop, latch-based TMR flip-flop, True-Single Phase Clock (TSPC) TMR flip-flop, scannable TMR flip-flop and self-correcting TMR flipflop. For all variants, the multi-bit upsets have been addressed by applying special placement constraints, while the Single Event Transient (SET) mitigation was achieved through the usage of customized SET filters and selection of optimal inverter sizes for the clock and reset trees. The proposed flip-flop variants feature differing performance, thus enabling to choose the optimal solution for every sensitive node in the circuit, according to the predefined design constraints. Several flip-flop designs have been validated on IHP's 130nm BiCMOS process, by irradiation of custom-designed shift registers. It has been shown that the proposed TMR flip-flops are robust to soft errors with a threshold Linear Energy Transfer (LET) from (32.4 MeV.cm(2)/mg) to (62.5 MeV.cm(2)/mg), depending on the variant.
We study the derivational complexity of context-free and context-sensitive grammars by counting the maximal number of non-regular and non-context-free rules used in a derivation, respectively. The degree of non-regularity/non-context-freeness of a language is the minimum degree of non-regularity/non-context-freeness of context-free/context-sensitive grammars generating it. A language has finite degree of non-regularity iff it is regular. We give a condition for deciding whether the degree of non-regularity of a given unambiguous context-free grammar is finite. The problem becomes undecidable for arbitrary linear context-free grammars. The degree of non-regularity of unambiguous context-free grammars generating non-regular languages as well as that of grammars generating deterministic context-free languages that are not regular is of order Omega(n). Context-free non-regular languages of sublinear degree of non-regularity are presented. A language has finite degree of non-context-freeness if it is context-free. Context-sensitive grammars with a quadratic degree of non-context-freeness are more powerful than those of a linear degree.
We elaborate upon the theoretical foundations of a metric temporal extension of Answer Set Programming. In analogy to previous extensions of ASP with constructs from Linear Temporal and Dynamic Logic, we accomplish this in the setting of the logic of Here-and-There and its non-monotonic extension, called Equilibrium Logic. More precisely, we develop our logic on the same semantic underpinnings as its predecessors and thus use a simple time domain of bounded time steps. This allows us to compare all variants in a uniform framework and ultimately combine them in a common implementation.
We study the concept of reversibility in connection with parallel communicating systems of finite automata (PCFA in short). We define the notion of reversibility in the case of PCFA (also covering the non-deterministic case) and discuss the relationship of the reversibility of the systems and the reversibility of its components. We show that a system can be reversible with non-reversible components, and the other way around, the reversibility of the components does not necessarily imply the reversibility of the system as a whole. We also investigate the computational power of deterministic centralized reversible PCFA. We show that these very simple types of PCFA (returning or non-returning) can recognize regular languages which cannot be accepted by reversible (deterministic) finite automata, and that they can even accept languages that are not context-free. We also separate the deterministic and non-deterministic variants in the case of systems with non-returning communication. We show that there are languages accepted by non-deterministic centralized PCFA, which cannot be recognized by any deterministic variant of the same type.
Stripe rust (Pst) is a major disease of wheat crops leading untreated to severe yield losses. The use of fungicides is often essential to control Pst when sudden outbreaks are imminent. Sensors capable of detecting Pst in wheat crops could optimize the use of fungicides and improve disease monitoring in high-throughput field phenotyping. Now, deep learning provides new tools for image recognition and may pave the way for new camera based sensors that can identify symptoms in early stages of a disease outbreak within the field. The aim of this study was to teach an image classifier to detect Pst symptoms in winter wheat canopies based on a deep residual neural network (ResNet). For this purpose, a large annotation database was created from images taken by a standard RGB camera that was mounted on a platform at a height of 2 m. Images were acquired while the platform was moved over a randomized field experiment with Pst-inoculated and Pst-free plots of winter wheat. The image classifier was trained with 224 x 224 px patches tiled from the original, unprocessed camera images. The image classifier was tested on different stages of the disease outbreak. At patch level the image classifier reached a total accuracy of 90%. To test the image classifier on image level, the image classifier was evaluated with a sliding window using a large striding length of 224 px allowing for fast test performance. At image level, the image classifier reached a total accuracy of 77%. Even in a stage with very low disease spreading (0.5%) at the very beginning of the Pst outbreak, a detection accuracy of 57% was obtained. Still in the initial phase of the Pst outbreak with 2 to 4% of Pst disease spreading, detection accuracy with 76% could be attained. With further optimizations, the image classifier could be implemented in embedded systems and deployed on drones, vehicles or scanning systems for fast mapping of Pst outbreaks.
This paper continues the line of research aimed at investigating the relationship between logic programs and first-order theories. We extend the definition of program completion to programs with input and output in a subset of the input language of the ASP grounder gringo, study the relationship between stable models and completion in this context, and describe preliminary experiments with the use of two software tools, anthem and vampire, for verifying the correctness of programs with input and output. Proofs of theorems are based on a lemma that relates the semantics of programs studied in this paper to stable models of first-order formulas.
Full error detection and correction method applied on pipelined structure using two approaches
(2020)
In this paper, two approaches are evaluated using the Full Error Detection and Correction (FEDC) method for a pipelined structure. The approaches are referred to as Full Duplication with Comparison (FDC) and Concurrent Checking with Parity Prediction (CCPP). Aforementioned approaches are focused on the borderline cases of FEDC method which implement Error Detection Circuit (EDC) in two manners for the purpose of protection of combinational logic to address the soft errors of unspecified duration. The FDC approach implements a full duplication of the combinational circuit, as the most complex and expensive implementation of the FEDC method, and the CCPP approach implements only the parity prediction bit, being the simplest and cheapest technique, for soft error detection. Both approaches are capable of detecting soft errors in the combinational logic, with single faults being injected into the design. On the one hand, the FDC approach managed to detect and correct all injected faults while the CCPP approach could not detect multiple faults created at the output of combinational circuit. On the other hand, the FDC approach leads to higher power consumption and area increase compared to the CCPP approach.
Reliable and robust data processing is one of the hardest requirements for systems in fields such as medicine, security, automotive, aviation, and space, to prevent critical system failures caused by changes in operating or environmental conditions. In particular, Signal Integrity (SI) effects such as crosstalk may distort the signal information in sensitive mixed-signal designs. A challenge for hardware systems used in the space are radiation effects. Namely, Single Event Effects (SEEs) induced by high-energy particle hits may lead to faulty computation, corrupted configuration settings, undesired system behavior, or even total malfunction.
Since these applications require an extra effort in design and implementation, it is beneficial to master the standard cell design process and corresponding design flow methodologies optimized for such challenges. Especially for reliable, low-noise differential signaling logic such as Current Mode Logic (CML), a digital design flow is an orthogonal approach compared to traditional manual design. As a consequence, mandatory preliminary considerations need to be addressed in more detail. First of all, standard cell library concepts with suitable cell extensions for reliable systems and robust space applications have to be elaborated. Resulting design concepts at the cell level should enable the logical synthesis for differential logic design or improve the radiation-hardness. In parallel, the main objectives of the proposed cell architectures are to reduce the occupied area, power, and delay overhead. Second, a special setup for standard cell characterization is additionally required for a proper and accurate logic gate modeling. Last but not least, design methodologies for mandatory design flow stages such as logic synthesis and place and route need to be developed for the respective hardware systems to keep the reliability or the radiation-hardness at an acceptable level.
This Thesis proposes and investigates standard cell-based design methodologies and techniques for reliable and robust hardware systems implemented in a conventional semi-conductor technology. The focus of this work is on reliable differential logic design and robust radiation-hardening-by-design circuits. The synergistic connections of the digital design flow stages are systematically addressed for these two types of hardware systems. In more detail, a library for differential logic is extended with single-ended pseudo-gates for intermediate design steps to support the logic synthesis and layout generation with commercial Computer-Aided Design (CAD) tools. Special cell layouts are proposed to relax signal routing. A library set for space applications is similarly extended by novel Radiation-Hardening-by-Design (RHBD) Triple Modular Redundancy (TMR) cells, enabling a one fault correction. Therein, additional optimized architectures for glitch filter cells, robust scannable and self-correcting flip-flops, and clock-gates are proposed. The circuit concepts and the physical layout representation views of the differential logic gates and the RHBD cells are discussed. However, the quality of results of designs depends implicitly on the accuracy of the standard cell characterization which is examined for both types therefore. The entire design flow is elaborated from the hardware design description to the layout representations. A 2-Phase routing approach together with an intermediate design conversion step is proposed after the initial place and route stage for reliable, pure differential designs, whereas a special constraining for RHBD applications in a standard technology is presented.
The digital design flow for differential logic design is successfully demonstrated on a reliable differential bipolar CML application. A balanced routing result of its differential signal pairs is obtained by the proposed 2-Phase-routing approach. Moreover, the elaborated standard cell concepts and design methodology for RHBD circuits are applied to the digital part of a 7.5-15.5 MSPS 14-bit Analog-to-Digital Converter (ADC) and a complex microcontroller architecture. The ADC is implemented in an unhardened standard semiconductor technology and successfully verified by electrical measurements. The overhead of the proposed hardening approach is additionally evaluated by design exploration of the microcontroller application. Furthermore, the first obtained related measurement results of novel RHBD-∆TMR flip-flops show a radiation-tolerance up to a threshold Linear Energy Transfer (LET) of 46.1, 52.0, and 62.5 MeV cm2 mg-1 and savings in silicon area of 25-50 % for selected TMR standard cell candidates.
As a conclusion, the presented design concepts at the cell and library levels, as well as the design flow modifications are adaptable and transferable to other technology nodes. In particular, the design of hybrid solutions with integrated reliable differential logic modules together with robust radiation-tolerant circuit parts is enabled by the standard cell concepts and design methods proposed in this work.
Accurately solving classification problems nowadays is likely to be the most relevant machine learning task. Binary classification separating two classes only is algorithmically simpler but has fewer potential applications as many real-world problems are multi-class. On the reverse, separating only a subset of classes simplifies the classification task. Even though existing multi-class machine learning algorithms are very flexible regarding the number of classes, they assume that the target set Y is fixed and cannot be restricted once the training is finished. On the other hand, existing state-of-the-art production environments are becoming increasingly interconnected with the advance of Industry 4.0 and related technologies such that additional information can simplify the respective classification problems. In light of this, the main aim of this thesis is to introduce dynamic classification that generalizes multi-class classification such that the target class set can be restricted arbitrarily to a non-empty class subset M of Y at any time between two consecutive predictions.
This task is solved by a combination of two algorithmic approaches. First, classifier calibration, which transforms predictions into posterior probability estimates that are intended to be well calibrated. The analysis provided focuses on monotonic calibration and in particular corrects wrong statements that appeared in the literature. It also reveals that bin-based evaluation metrics, which became popular in recent years, are unjustified and should not be used at all. Next, the validity of Platt scaling, which is the most relevant parametric calibration approach, is analyzed in depth. In particular, its optimality for classifier predictions distributed according to four different families of probability distributions as well its equivalence with Beta calibration up to a sigmoidal preprocessing are proven. For non-monotonic calibration, extended variants on kernel density estimation and the ensemble method EKDE are introduced. Finally, the calibration techniques are evaluated using a simulation study with complete information as well as on a selection of 46 real-world data sets.
Building on this, classifier calibration is applied as part of decomposition-based classification that aims to reduce multi-class problems to simpler (usually binary) prediction tasks. For the involved fusing step performed at prediction time, a new approach based on evidence theory is presented that uses classifier calibration to model mass functions. This allows the analysis of decomposition-based classification against a strictly formal background and to prove closed-form equations for the overall combinations. Furthermore, the same formalism leads to a consistent integration of dynamic class information, yielding a theoretically justified and computationally tractable dynamic classification model. The insights gained from this modeling are combined with pairwise coupling, which is one of the most relevant reduction-based classification approaches, such that all individual predictions are combined with a weight. This not only generalizes existing works on pairwise coupling but also enables the integration of dynamic class information.
Lastly, a thorough empirical study is performed that compares all newly introduced approaches to existing state-of-the-art techniques. For this, evaluation metrics for dynamic classification are introduced that depend on corresponding sampling strategies. Thereafter, these are applied during a three-part evaluation. First, support vector machines and random forests are applied on 26 data sets from the UCI Machine Learning Repository. Second, two state-of-the-art deep neural networks are evaluated on five benchmark data sets from a relatively recent reference work. Here, computationally feasible strategies to apply the presented algorithms in combination with large-scale models are particularly relevant because a naive application is computationally intractable. Finally, reference data from a real-world process allowing the inclusion of dynamic class information are collected and evaluated. The results show that in combination with support vector machines and random forests, pairwise coupling approaches yield the best results, while in combination with deep neural networks, differences between the different approaches are mostly small to negligible. Most importantly, all results empirically confirm that dynamic classification succeeds in improving the respective prediction accuracies. Therefore, it is crucial to pass dynamic class information in respective applications, which requires an appropriate digital infrastructure.
Answer Set Programming (ASP) is a paradigm for modeling and solving problems for knowledge representation and reasoning. There are plenty of results dedicated to studying the hardness of (fragments of) ASP. So far, these studies resulted in characterizations in terms of computational complexity as well as in fine-grained insights presented in form of dichotomy-style results, lower bounds when translating to other formalisms like propositional satisfiability (SAT), and even detailed parameterized complexity landscapes. A generic parameter in parameterized complexity originating from graph theory is the socalled treewidth, which in a sense captures structural density of a program. Recently, there was an increase in the number of treewidth-based solvers related to SAT. While there are translations from (normal) ASP to SAT, no reduction that preserves treewidth or at least keeps track of the treewidth increase is known. In this paper we propose a novel reduction from normal ASP to SAT that is aware of the treewidth, and guarantees that a slight increase of treewidth is indeed sufficient. Further, we show a new result establishing that, when considering treewidth, already the fragment of normal ASP is slightly harder than SAT (under reasonable assumptions in computational complexity). This also confirms that our reduction probably cannot be significantly improved and that the slight increase of treewidth is unavoidable. Finally, we present an empirical study of our novel reduction from normal ASP to SAT, where we compare treewidth upper bounds that are obtained via known decomposition heuristics. Overall, our reduction works better with these heuristics than existing translations. (c) 2021 Elsevier B.V. All rights reserved.
M-rate 0L systems are interactionless Lindenmayer systems together with a function assigning to every string a set of multisets of productions that may be applied simultaneously to the string. Some questions that have been left open in the forerunner papers are examined, and the computational power of deterministic M-rate 0L systems is investigated, where also tabled and extended variants are taken into consideration.
In this paper, an asynchronous design for soft error detection and correction in combinational and sequential circuits is presented. The proposed architecture is called Asynchronous Full Error Detection and Correction (AFEDC). A custom design flow with integrated commercial EDA tools generates the AFEDC using the asynchronous bundled-data design style. The AFEDC relies on an Error Detection Circuit (EDC) for protecting the combinational logic and fault-tolerant latches for protecting the sequential logic. The EDC can be implemented using different detection methods. For this work, two boundary variants are considered, the Full Duplication with Comparison (FDC) and the Partial Duplication with Parity Prediction (PDPP). The AFEDC architecture can handle single events and timing faults of arbitrarily long duration as well as the synchronous FEDC, but additionally can address known metastability issues of the FEDC and other similar synchronous architectures and provide a more practical solution for handling the error recovery process. Two case studies are developed, a carry look-ahead adder and a pipelined non-restoring array divider. Results show that the AFEDC provides equivalent fault coverage when compared to the FEDC while reducing area, ranging from 9.6% to 17.6%, and increasing energy efficiency, which can be up to 6.5%.
Eclingo
(2020)
We describe eclingo, a solver for epistemic logic programs under Gelfond 1991 semantics built upon the Answer Set Programming system clingo. The input language of eclingo uses the syntax extension capabilities of clingo to define subjective literals that, as usual in epistemic logic programs, allow for checking the truth of a regular literal in all or in some of the answer sets of a program. The eclingo solving process follows a guess and check strategy. It first generates potential truth values for subjective literals and, in a second step, it checks the obtained result with respect to the cautious and brave consequences of the program. This process is implemented using the multi-shot functionalities of clingo. We have also implemented some optimisations, aiming at reducing the search space and, therefore, increasing eclingo 's efficiency in some scenarios. Finally, we compare the efficiency of eclingo with two state-of-the-art solvers for epistemic logic programs on a pair of benchmark scenarios and show that eclingo generally outperforms their obtained results.
Many Android applications embed webpages via WebView components and execute JavaScript code within Android. Hybrid applications leverage dedicated APIs to load a resource and render it in a WebView. Furthermore, Android objects can be shared with the JavaScript world. However, bridging the interfaces of the Android and JavaScript world might also incur severe security threats: Potentially untrusted webpages and their JavaScript might interfere with the Android environment and its access to native features.
No general analysis is currently available to assess the implications of such hybrid apps bridging the two worlds. To understand the semantics and effects of hybrid apps, we perform a large-scale study on the usage of the hybridization APIs in the wild. We analyze and categorize the parameters to hybridization APIs for 7,500 randomly selected and the 196 most popular applications from the Google Playstore as well as 1000 malware samples. Our results advance the general understanding of hybrid applications, as well as implications for potential program analyses, and the current security situation: We discovered thousands of flows of sensitive data from Android to JavaScript, the vast majority of which could flow to potentially untrustworthy code. Our analysis identified numerous web pages embedding vulnerabilities, which we exemplarily exploited. Additionally, we discovered a multitude of applications in which potentially untrusted JavaScript code may interfere with (trusted) Android objects, both in benign and malign applications.
A triple modular redundancy (TMR) based design technique for double cell upsets (DCUs) mitigation is investigated in this paper. This technique adds three extra self-voter circuits into a traditional TMR structure to enable the enhanced error correction capability. Fault-injection simulations show that the soft error rate (SER) of the proposed technique is lower than 3% of that of TMR. The implementation of this proposed technique is compatible with the automatic digital design flow, and its applicability and performance are evaluated on an FIFO circuit.
As a result of CMOS scaling, radiation-induced Single-Event Effects (SEEs) in electronic circuits became a critical reliability issue for modern Integrated Circuits (ICs) operating under harsh radiation conditions. SEEs can be triggered in combinational or sequential logic by the impact of high-energy particles, leading to destructive or non-destructive faults, resulting in data corruption or even system failure. Typically, the SEE mitigation methods are deployed statically in processing architectures based on the worst-case radiation conditions, which is most of the time unnecessary and results in a resource overhead. Moreover, the space radiation conditions are dynamically changing, especially during Solar Particle Events (SPEs). The intensity of space radiation can differ over five orders of magnitude within a few hours or days, resulting in several orders of magnitude fault probability variation in ICs during SPEs. This thesis introduces a comprehensive approach for designing a self-adaptive fault resilient multiprocessing system to overcome the static mitigation overhead issue. This work mainly addresses the following topics: (1) Design of on-chip radiation particle monitor for real-time radiation environment detection, (2) Investigation of space environment predictor, as support for solar particle events forecast, (3) Dynamic mode configuration in the resilient multiprocessing system. Therefore, according to detected and predicted in-flight space radiation conditions, the target system can be configured to use no mitigation or low-overhead mitigation during non-critical periods of time. The redundant resources can be used to improve system performance or save power. On the other hand, during increased radiation activity periods, such as SPEs, the mitigation methods can be dynamically configured appropriately depending on the real-time space radiation environment, resulting in higher system reliability. Thus, a dynamic trade-off in the target system between reliability, performance and power consumption in real-time can be achieved. All results of this work are evaluated in a highly reliable quad-core multiprocessing system that allows the self-adaptive setting of optimal radiation mitigation mechanisms during run-time. Proposed methods can serve as a basis for establishing a comprehensive self-adaptive resilient system design process. Successful implementation of the proposed design in the quad-core multiprocessor shows its application perspective also in the other designs.
The highly structured nature of the educational sector demands effective policy mechanisms close to the needs of the field. That is why evidence-based policy making, endorsed by the European Commission under Erasmus+ Key Action 3, aims to make an alignment between the domains of policy and practice. Against this background, this article addresses two issues: First, that there is a vertical gap in the translation of higher-level policies to local strategies and regulations. Second, that there is a horizontal gap between educational domains regarding the policy awareness of individual players. This was analyzed in quantitative and qualitative studies with domain experts from the fields of virtual mobility and teacher training. From our findings, we argue that the combination of both gaps puts the academic bridge from secondary to tertiary education at risk, including the associated knowledge proficiency levels. We discuss the role of digitalization in the academic bridge by asking the question: which value does the involved stakeholders expect from educational policies? As a theoretical basis, we rely on the model of value co-creation for and by stakeholders. We describe the used instruments along with the obtained results and proposed benefits. Moreover, we reflect on the methodology applied, and we finally derive recommendations for future academic bridge policies.
The highly structured nature of the educational sector demands effective policy mechanisms close to the needs of the field. That is why evidence-based policy making, endorsed by the European Commission under Erasmus+ Key Action 3, aims to make an alignment between the domains of policy and practice. Against this background, this article addresses two issues: First, that there is a vertical gap in the translation of higher-level policies to local strategies and regulations. Second, that there is a horizontal gap between educational domains regarding the policy awareness of individual players. This was analyzed in quantitative and qualitative studies with domain experts from the fields of virtual mobility and teacher training. From our findings, we argue that the combination of both gaps puts the academic bridge from secondary to tertiary education at risk, including the associated knowledge proficiency levels. We discuss the role of digitalization in the academic bridge by asking the question: which value does the involved stakeholders expect from educational policies? As a theoretical basis, we rely on the model of value co-creation for and by stakeholders. We describe the used instruments along with the obtained results and proposed benefits. Moreover, we reflect on the methodology applied, and we finally derive recommendations for future academic bridge policies.
Mit der Covid-19-Pandemie hat die Digitalisierung an Hochschulen weitere Bedeutung erlangt. Insbesondere dem Einsatz digitaler Medien in Lehre und Studium galt großes Augenmerk. Das legt die Hoffnung nahe, dass die Digitalisierung durch das Virus einen Schub erfahren und die Hochschulen dauerhaft verändert hat. Der Beitrag geht am Beispiel der Universität Potsdam der Frage nach, welcher Natur diese Veränderungen waren – ausgehend sowohl von den unternommenen Maßnahmen als auch von den erzielten Resultaten – und inwiefern sie von Dauer sind. Dabei werden förderliche und hemmende Faktoren identifiziert, die in Empfehlungen für weitere Digitalisierungsvorhaben übersetzt werden.
Answer Set Programming (ASP) allows us to address knowledge-intensive search and optimization problems in a declarative way due to its integrated modeling, grounding, and solving workflow. A problem is modeled using a rule based language and then grounded and solved. Solving results in a set of stable models that correspond to solutions of the modeled problem. In this thesis, we present the design and implementation of the clingo system---perhaps, the most
widely used ASP system. It features a rich modeling language originating from the field of knowledge representation and reasoning, efficient grounding algorithms based on database evaluation techniques, and high performance solving algorithms based on Boolean satisfiability (SAT) solving technology.
The contributions of this thesis lie in the design of the modeling language, the design and implementation of the grounding algorithms, and the design and implementation of an Application Programmable Interface (API) facilitating the use of ASP in real world applications and the implementation of complex forms of reasoning beyond the traditional ASP workflow.
Large-scale databases that report the inhibitory capacities of many combinations of candidate drug compounds and cultivated cancer cell lines have driven the development of preclinical drug-sensitivity models based on machine learning. However, cultivated cell lines have devolved from human cancer cells over years or even decades under selective pressure in culture conditions. Moreover, models that have been trained on in vitro data cannot account for interactions with other types of cells. Drug-response data that are based on patient-derived cell cultures, xenografts, and organoids, on the other hand, are not available in the quantities that are needed to train high-capacity machine-learning models. We found that pre-training deep neural network models of drug sensitivity on in vitro drug-sensitivity databases before fine-tuning the model parameters on patient-derived data improves the models’ accuracy and improves the biological plausibility of the features, compared to training only on patient-derived data. From our experiments, we can conclude that pre-trained models outperform models that have been trained on the target domains in the vast majority of cases.
Large-scale databases that report the inhibitory capacities of many combinations of candidate drug compounds and cultivated cancer cell lines have driven the development of preclinical drug-sensitivity models based on machine learning. However, cultivated cell lines have devolved from human cancer cells over years or even decades under selective pressure in culture conditions. Moreover, models that have been trained on in vitro data cannot account for interactions with other types of cells. Drug-response data that are based on patient-derived cell cultures, xenografts, and organoids, on the other hand, are not available in the quantities that are needed to train high-capacity machine-learning models. We found that pre-training deep neural network models of drug sensitivity on in vitro drug-sensitivity databases before fine-tuning the model parameters on patient-derived data improves the models’ accuracy and improves the biological plausibility of the features, compared to training only on patient-derived data. From our experiments, we can conclude that pre-trained models outperform models that have been trained on the target domains in the vast majority of cases.
The notion of coherence relations is quite widely accepted in general, but concrete proposals differ considerably on the questions of how they should be motivated, which relations are to be assumed, and how they should be defined. This paper takes a "bottom-up" perspective by assessing the contribution made by linguistic signals (connectives), using insights from the relevant literature as well as verification by practical text annotation. We work primarily with the German language here and focus on the realm of contrast. Thus, we suggest a new inventory of contrastive connective functions and discuss their relationship to contrastive coherence relations that have been proposed in earlier work.
Handling manufacturing and aging faults with software-based techniques in tiny embedded systems
(2017)
Non-volatile memory area occupies a large portion of the area of a chip in an embedded system. Such memories are prone to manufacturing faults, retention faults, and aging faults. The paper presents a single software based technique that allows for handling all of these fault types in tiny embedded systems without the need for hardware support. This is beneficial for low-cost embedded systems with simple memory architectures. A software infrastructure and a flow are presented that demonstrate how the presented technique is used in general for fault handling right after manufacturing and in-the-field. Moreover, a full implementation is presented for a MSP430 microcontroller, along with a discussion of the performance, overhead, and reliability impacts.
This paper describes architectural extensions for a dynamically scheduled processor, so that it can be used in three different operation modes, ranging from high-performance, to high-reliability. With minor hardware-extensions of the control path, the resources of the superscalar data-path can be used either for high-performance execution, fail-safe-operation, or fault-tolerant-operation. This makes the processor-architecture a very good candidate for applications with dynamically changing reliability requirements, e.g. for automotive applications. The paper reports the hardware-overhead for the extensions, and investigates the performance penalties introduced by the fail-safe and fault-tolerant mode. Furthermore, a comprehensive fault simulation was carried out in order to investigate the fault-coverage of the proposed approach.
Answer Set Programming (ASP) is a successful rule-based formalism for modeling and solving knowledge-intense combinatorial (optimization) problems. Despite its success in both academic and industry, open challenges like automatic source code optimization, and software engineering remains. This is because a problem encoded into an ASP might not have the desired solving performance compared to an equivalent representation. Motivated by these two challenges, this paper has three main contributions. First, we propose a developing process towards a methodology to implement ASP programs, being faithful to existing methods. Second, we present ASP encodings that serve as the basis from the developing process. Third, we demonstrate the use of ASP to reverse the standard solving process. That is, knowing answer sets in advance, and desired strong equivalent properties, “we” exhaustively reconstruct ASP programs if they exist. This paper was originally motivated by the search of propositional formulas (if they exist) that represent the semantics of a new aggregate operator. Particularly, a parity aggregate. This aggregate comes as an improvement from the already existing parity (xor) constraints from xorro, where lacks expressiveness, even though these constraints fit perfectly for reasoning modes like sampling or model counting. To this end, this extended version covers the fundaments from parity constraints as well as the xorro system. Hence, we delve a little more in the examples and the proposed methodology over parity constraints. Finally, we discuss our results by showing the only representation available, that satisfies different properties from the classical logic xor operator, which is also consistent with the semantics of parity constraints from xorro.
Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices - including stateful firewalls - for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41.
The Internet can be considered as the most important infrastructure for modern society and businesses. A loss of Internet connectivity has strong negative financial impacts for businesses and economies. Therefore, assessing Internet connectivity, in particular beyond their own premises and area of direct control, is of growing importance in the face of potential failures, accidents, and malicious attacks. This paper presents CORIA, a software framework for an easy analysis of connectivity risks based on large network graphs. It provides researchers, risk analysts, network managers and security consultants with a tool to assess an organization's connectivity and paths options through the Internet backbone, including a user-friendly and insightful visual representation of results. CORIA is flexibly extensible in terms of novel data sets, graph metrics, and risk scores that enable further use cases. The performance of CORIA is evaluated by several experiments on the Internet graph and further randomly generated networks.
Das Promotionsvorhaben verfolgt das Ziel, die Zuverlässigkeit der Datenspeicherung und die Speicherdichte von neu entwickelten Speichern (Emerging Memories) mit Multi-Level-Speicherzellen zu verbessern bzw. zu erhöhen. Hierfür werden Codes zur Erkennung von unidirektionalen Fehlern analysiert, modifiziert und neu entwickelt, um sie innerhalb der neuen Speicher anwenden zu können. Der Fokus liegt dabei auf sog. Berger-Codes und m-aus-n-Codes. Da Multi-Level-Speicherzellen nicht mehr binär, sondern mit mehreren Leveln arbeiten, können bisher verwendete Codes nicht mehr verwendet werden, bzw. müssen entsprechend angepasst werden. Auf Basis der Berger-Codes und m-aus-n-Codes werden in dieser Arbeit neue Codes abgeleitet, welche in der Lage sind, Daten auch in mehrwertigen Systemen zu schützen.
Supervised machine learning to assess methane emissions of a dairy building with natural ventilation
(2020)
A reliable quantification of greenhouse gas emissions is a basis for the development of adequate mitigation measures. Protocols for emission measurements and data analysis approaches to extrapolate to accurate annual emission values are a substantial prerequisite in this context. We systematically analyzed the benefit of supervised machine learning methods to project methane emissions from a naturally ventilated cattle building with a concrete solid floor and manure scraper located in Northern Germany. We took into account approximately 40 weeks of hourly emission measurements and compared model predictions using eight regression approaches, 27 different sampling scenarios and four measures of model accuracy. Data normalization was applied based on median and quartile range. A correlation analysis was performed to evaluate the influence of individual features. This indicated only a very weak linear relation between the methane emission and features that are typically used to predict methane emission values of naturally ventilated barns. It further highlighted the added value of including day-time and squared ambient temperature as features. The error of the predicted emission values was in general below 10%. The results from Gaussian processes, ordinary multilinear regression and neural networks were least robust. More robust results were obtained with multilinear regression with regularization, support vector machines and particularly the ensemble methods gradient boosting and random forest. The latter had the added value to be rather insensitive against the normalization procedure. In the case of multilinear regression, also the removal of not significantly linearly related variables (i.e., keeping only the day-time component) led to robust modeling results. We concluded that measurement protocols with 7 days and six measurement periods can be considered sufficient to model methane emissions from the dairy barn with solid floor with manure scraper, particularly when periods are distributed over the year with a preference for transition periods. Features should be normalized according to median and quartile range and must be carefully selected depending on the modeling approach.
Answer Set Programming (ASP) is a well-known paradigm of declarative programming with roots in logic programming and non-monotonic reasoning. Similar to other closely related problemsolving technologies, such as SAT/SMT, QBF, Planning and Scheduling, advancements in ASP solving are assessed in competition events. In this paper, we report about the design and results of the Sixth ASP Competition, which was jointly organized by the University of Calabria (Italy), Aalto University (Finland), and the University of Genoa (Italy), in affiliation with the 13th International Conference on Logic Programming and Non-Monotonic Reasoning. This edition maintained some of the design decisions introduced in 2014, e.g., the conception of sub-tracks, the scoring scheme,and the adherence to a fixed modeling language in order to push the adoption of the ASP-Core-2 standard. On the other hand, it featured also some novelties, like a benchmark selection stage classifying instances according to their empirical hardness, and a “Marathon” track where the topperforming systems are given more time for solving hard benchmarks.
In this extended abstract, we will analyze the current challenges for the envisioned Self-Adaptive CPS. In addition, we will outline our results to approach these challenges with SMARTSOS [10] a generic approach based on extensions of graph transformation systems employing open and adaptive collaborations and models at runtime for trustworthy self-adaptation, self-organization, and evolution of the individual systems and the system-of-systems level taking the independent development, operation, management, and evolution of these systems into account.
Since 2004, increases in computational power described by Moore's law have substantially been realized in the form of additional cores rather than through faster clock speeds. To make effective use of modern hardware when solving hard computational problems, it is therefore necessary to employ parallel solution strategies. In this work, we demonstrate how effective parallel solvers for propositional satisfiability (SAT), one of the most widely studied NP-complete problems, can be produced automatically from any existing sequential, highly parametric SAT solver. Our Automatic Construction of Parallel Portfolios (ACPP) approach uses an automatic algorithm configuration procedure to identify a set of configurations that perform well when executed in parallel. Applied to two prominent SAT solvers, Lingeling and clasp, our ACPP procedure identified 8-core solvers that significantly outperformed their sequential counterparts on a diverse set of instances from the application and hard combinatorial category of the 2012 SAT Challenge. We further extended our ACPP approach to produce parallel portfolio solvers consisting of several different solvers by combining their configuration spaces. Applied to the component solvers of the 2012 SAT Challenge gold medal winning SAT Solver pfolioUZK, our ACPP procedures produced a significantly better-performing parallel SAT solver.
Lehrende in der Lehrkräfteausbildung sind stets damit konfrontiert, dass sie den Studierenden innovative Methoden modernen Schulunterrichts traditionell rezipierend vorstellen. In Deutschland gibt es circa 40 Universitäten, die Informatik mit Lehramtsbezug ausbilden. Allerdings gibt es nur wenige Konzepte, die sich mit der Verbindung von Bildungswissenschaften und der Informatik mit ihrer Didaktik beschäftigen und keine Konzepte, die eine konstruktivistische Lehre in der Informatik verfolgen.
Daher zielt diese Masterarbeit darauf ab, diese Lücke aufgreifen und anhand des „Didaktik der Informatik I“ Moduls der Universität Potsdam ein Modell zur konstruktivistischen Hochschullehre zu entwickeln. Dabei soll ein bestehendes konstruktivistisches Lehrmodell auf die Informatikdidaktik übertragen und Elemente zur Verbindung von Bildungswissenschaften, Fachwissenschaften und Fachdidaktiken mit einbezogen werden. Dies kann eine Grundlage für die Planung von Informatikdidaktischen Modulen bieten, aber auch als Inspiration zur Übertragung bestehender innovativer Lehrkonzepte auf andere Fachdidaktiken dienen.
Um ein solches konstruktivistisches Lehr-Lern-Modell zu erstellen, wird zunächst der Zusammenhang von Bildungswissenschaften, Fachwissenschaften und Fachdidaktiken erläutert und anschließend die Notwendigkeit einer Vernetzung hervorgehoben. Hieran folgt eine Darstellung zu relevanten Lerntheorien und bereits entwickelten innovativen Lernkonzepten. Anknüpfend wird darauf eingegangen, welche Anforderungen die Kultusminister- Konferenz an die Ausbildung von Lehrkräften stellt und wie diese Ausbildung für die Informatik momentan an der Universität Potsdam erfolgt. Aus allen Erkenntnissen heraus werden Anforderungen an ein konstruktivistisches Lehrmodell festgelegt. Unter Berücksichtigung der Voraussetzungen der Studienordnung für das Lehramt Informatik wird anschließend ein Modell für konstruktivistische Informatikdidaktik vorgestellt.
Weiterführende Forschung könnte sich damit auseinandersetzen, inwiefern sich die Motivation und Leistung im vergleich zum ursprünglichen Modul ändert und ob die Kompetenzen zur Unterrichtsplanung und Unterrichtsgestaltung durch das neue Modulkonzept stärker ausgebaut werden können.
Recent philosophical analyses of the epistemic dimension of images in the sciences show a certain trend in acknowledging potential roles of these images beyond their merely decorative or pedagogical functions. We argue, however, that this new debate has yet paid little attention to a special type of pictures, we call ‘visual metaphor’, and its versatile heuristic potential in organizing data, supporting communication, and guiding research, modeling, and theory formation. Based on a case study of Conrad Hal Waddington’s epigenetic landscape images in biology, we develop a descriptive framework applicable to heuristic roles of various visual metaphors in the sciences.
With the downscaling of CMOS technologies, the radiation-induced Single Event Transient (SET) effects in combinational logic have become a critical reliability issue for modern integrated circuits (ICs) intended for operation under harsh radiation conditions. The SET pulses generated in combinational logic may propagate through the circuit and eventually result in soft errors. It has thus become an imperative to address the SET effects in the early phases of the radiation-hard IC design. In general, the soft error mitigation solutions should accommodate both static and dynamic measures to ensure the optimal utilization of available resources. An efficient soft-error-aware design should address synergistically three main aspects: (i) characterization and modeling of soft errors, (ii) multi-level soft error mitigation, and (iii) online soft error monitoring. Although significant results have been achieved, the effectiveness of SET characterization methods, accuracy of predictive SET models, and efficiency of SET mitigation measures are still critical issues. Therefore, this work addresses the following topics: (i) Characterization and modeling of SET effects in standard combinational cells, (ii) Static mitigation of SET effects in standard combinational cells, and (iii) Online particle detection, as a support for dynamic soft error mitigation.
Since the standard digital libraries are widely used in the design of radiation-hard ICs, the characterization of SET effects in standard cells and the availability of accurate SET models for the Soft Error Rate (SER) evaluation are the main prerequisites for efficient radiation-hard design. This work introduces an approach for the SPICE-based standard cell characterization with the reduced number of simulations, improved SET models and optimized SET sensitivity database. It has been shown that the inherent similarities in the SET response of logic cells for different input levels can be utilized to reduce the number of required simulations. Based on characterization results, the fitting models for the SET sensitivity metrics (critical charge, generated SET pulse width and propagated SET pulse width) have been developed. The proposed models are based on the principle of superposition, and they express explicitly the dependence of the SET sensitivity of individual combinational cells on design, operating and irradiation parameters. In contrast to the state-of-the-art characterization methodologies which employ extensive look-up tables (LUTs) for storing the simulation results, this work proposes the use of LUTs for storing the fitting coefficients of the SET sensitivity models derived from the characterization results. In that way the amount of characterization data in the SET sensitivity database is reduced significantly.
The initial step in enhancing the robustness of combinational logic is the application of gate-level mitigation techniques. As a result, significant improvement of the overall SER can be achieved with minimum area, delay and power overheads. For the SET mitigation in standard cells, it is essential to employ the techniques that do not require modifying the cell structure. This work introduces the use of decoupling cells for improving the robustness of standard combinational cells. By insertion of two decoupling cells at the output of a target cell, the critical charge of the cell’s output node is increased and the attenuation of short SETs is enhanced. In comparison to the most common gate-level techniques (gate upsizing and gate duplication), the proposed approach provides better SET filtering. However, as there is no single gate-level mitigation technique with optimal performance, a combination of multiple techniques is required. This work introduces a comprehensive characterization of gate-level mitigation techniques aimed to quantify their impact on the SET robustness improvement, as well as introduced area, delay and power overhead per gate. By characterizing the gate-level mitigation techniques together with the standard cells, the required effort in subsequent SER analysis of a target design can be reduced. The characterization database of the hardened standard cells can be utilized as a guideline for selection of the most appropriate mitigation solution for a given design.
As a support for dynamic soft error mitigation techniques, it is important to enable the online detection of energetic particles causing the soft errors. This allows activating the power-greedy fault-tolerant configurations based on N-modular redundancy only at the high radiation levels. To enable such a functionality, it is necessary to monitor both the particle flux and the variation of particle LET, as these two parameters contribute significantly to the system SER. In this work, a particle detection approach based on custom-sized pulse stretching inverters is proposed. Employing the pulse stretching inverters connected in parallel enables to measure the particle flux in terms of the number of detected SETs, while the particle LET variations can be estimated from the distribution of SET pulse widths. This approach requires a purely digital processing logic, in contrast to the standard detectors which require complex mixed-signal processing. Besides the possibility of LET monitoring, additional advantages of the proposed particle detector are low detection latency and power consumption, and immunity to error accumulation.
The results achieved in this thesis can serve as a basis for establishment of an overall soft-error-aware database for a given digital library, and a comprehensive multi-level radiation-hard design flow that can be implemented with the standard IC design tools. The following step will be to evaluate the achieved results with the irradiation experiments.
Utilizing quad-trees for efficient design space exploration with partial assignment evaluation
(2018)
Recently, it has been shown that constraint-based symbolic solving techniques offer an efficient way for deciding binding and routing options in order to obtain a feasible system level implementation. In combination with various background theories, a feasibility analysis of the resulting system may already be performed on partial solutions. That is, infeasible subsets of mapping and routing options can be pruned early in the decision process, which fastens the solving accordingly. However, allowing a proper design space exploration including multi-objective optimization also requires an efficient structure for storing and managing non-dominated solutions. In this work, we propose and study the usage of the Quad-Tree data structure in the context of partial assignment evaluation during system synthesis. Out experiments show that unnecessary dominance checks can be avoided, which indicates a preference of Quad-Trees over a commonly used list-based implementation for large combinatorial optimization problems.
Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the ‘argumentative microtext corpus’ [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801–815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.
An IoT network may consist of hundreds heterogeneous devices. Some of them may be constrained in terms of memory, power, processing and network capacity. Manual network and service management of IoT devices are challenging. We propose a usage of an ontology for the IoT device descriptions enabling automatic network management as well as service discovery and aggregation. Our IoT architecture approach ensures interoperability using existing standards, i.e. MQTT protocol and SemanticWeb technologies. We herein introduce virtual IoT devices and their semantic framework deployed at the edge of network. As a result, virtual devices are enabled to aggregate capabilities of IoT devices, derive new services by inference, delegate requests/responses and generate events. Furthermore, they can collect and pre-process sensor data. These tasks on the edge computing overcome the shortcomings of the cloud usage regarding siloization, network bandwidth, latency and speed. We validate our proposition by implementing a virtual device on a Raspberry Pi.
Learning how to prove
(2018)
We have developed an alternative approach to teaching computer science students how to prove. First, students are taught how to prove theorems with the Coq proof assistant. In a second, more difficult, step students will transfer their acquired skills to the area of textbook proofs. In this article we present a realisation of the second step. Proofs in Coq have a high degree of formality while textbook proofs have only a medium one. Therefore our key idea is to reduce the degree of formality from the level of Coq to textbook proofs in several small steps. For that purpose we introduce three proof styles between Coq and textbook proofs, called line by line comments, weakened line by line comments, and structure faithful proofs. While this article is mostly conceptional we also report on experiences with putting our approach into practise.
This paper proposes an education approach for master and bachelor students to enhance their skills in the area of reliability, safety and security of the electronic components in automated driving. The approach is based on the active synergetic work of research institutes, academia and industry in the frame of joint lab. As an example, the jointly organized summer school with the respective focus is organized and elaborated.
We propose a new temporal extension of the logic of Here-and-There (HT) and its equilibria obtained by combining it with dynamic logic over (linear) traces. Unlike previous temporal extensions of HT based on linear temporal logic, the dynamic logic features allow us to reason about the composition of actions. For instance, this can be used to exercise fine grained control when planning in robotics, as exemplified by GOLOG. In this paper, we lay the foundations of our approach, and refer to it as Linear Dynamic Equilibrium Logic, or simply DEL. We start by developing the formal framework of DEL and provide relevant characteristic results. Among them, we elaborate upon the relationships to traditional linear dynamic logic and previous temporal extensions of HT.
We present a prototype of an integrated reasoning environment for educational purposes. The presented tool is a fragment of a proof assistant and automated theorem prover. We describe the existing and planned functionality of the theorem prover and especially the functionality of the educational fragment. This currently supports working with terms of the untyped lambda calculus and addresses both undergraduate students and researchers. We show how the tool can be used to support the students' understanding of functional programming and discuss general problems related to the process of building theorem proving software that aims at supporting both research and education.
Manufacturing industries are undergoing a major paradigm shift towards more autonomy. Automated planning and scheduling then becomes a necessity. The Planning and Execution Competition for Logistics Robots in Simulation held at ICAPS is based on this scenario and provides an interesting testbed. However, the posed problem is challenging as also demonstrated by the somewhat weak results in 2017. The domain requires temporal reasoning and dealing with uncertainty. We propose a novel planning system based on Answer Set Programming and the Clingo solver to tackle these problems and incentivize robot cooperation. Our results show a significant performance improvement, both, in terms of lowering computational requirements and better game metrics.
Scenograph
(2018)
When developing a real-walking virtual reality experience, designers generally create virtual locations to fit a specific tracking volume. Unfortunately, this prevents the resulting experience from running on a smaller or differently shaped tracking volume. To address this, we present a software system called Scenograph. The core of Scenograph is a tracking volume-independent representation of real-walking experiences. Scenograph instantiates the experience to a tracking volume of given size and shape by splitting the locations into smaller ones while maintaining narrative structure. In our user study, participants' ratings of realism decreased significantly when existing techniques were used to map a 25m2 experience to 9m2 and an L-shaped 8m2 tracking volume. In contrast, ratings did not differ when Scenograph was used to instantiate the experience.
Beware of SMOMBIES
(2018)
Several research evaluated the user's style of walking for the verification of a claimed identity and showed high authentication accuracies in many settings. In this paper we present a system that successfully verifies a user's identity based on many real world smartphone placements and yet not regarded interactions while walking. Our contribution is the distinction of all considered activities into three distinct subsets and a specific one-class Support Vector Machine per subset. Using sensor data of 30 participants collected in a semi-supervised study approach, we prove that unsupervised verification is possible with very low false-acceptance and false-rejection rates. We furthermore show that these subsets can be distinguished with a high accuracy and demonstrate that this system can be deployed on off-the-shelf smartphones.
Die stetige Weiterentwicklung von VR-Systemen bietet neue Möglichkeiten der Interaktion mit virtuellen Objekten im dreidimensionalen Raum, stellt Entwickelnde von VRAnwendungen aber auch vor neue Herausforderungen. Selektions- und Manipulationstechniken müssen unter Berücksichtigung des Anwendungsszenarios, der Zielgruppe und der zur Verfügung stehenden Ein- und Ausgabegeräte ausgewählt werden. Diese Arbeit leistet einen Beitrag dazu, die Auswahl von passenden Interaktionstechniken zu unterstützen. Hierfür wurde eine repräsentative Menge von Selektions- und Manipulationstechniken untersucht und, unter Berücksichtigung existierender Klassifikationssysteme, eine Taxonomie entwickelt, die die Analyse der Techniken hinsichtlich interaktionsrelevanter Eigenschaften ermöglicht. Auf Basis dieser Taxonomie wurden Techniken ausgewählt, die in einer explorativen Studie verglichen wurden, um Rückschlüsse auf die Dimensionen der Taxonomie zu ziehen und neue Indizien für Vor- und Nachteile der Techniken in spezifischen Anwendungsszenarien zu generieren. Die Ergebnisse der Arbeit münden in eine Webanwendung, die Entwickelnde von VR-Anwendungen gezielt dabei unterstützt, passende Selektions- und Manipulationstechniken für ein Anwendungsszenario auszuwählen, indem Techniken auf Basis der Taxonomie gefiltert und unter Verwendung der Resultate aus der Studie sortiert werden können.
In computer science, computer systems are both, objects of investigation and tools that enable creative learning and design. Tools for learning have a long tradition in computer science education. Already in the late 1960s, Papert developed a concept which had an immense impact on the development of informal education in the following years: his theory of constructionism understands learning as a creative process of knowledge construction that is most effective when learners create something purposeful that they can try out, show around, discuss, analyse and receive praise for. By now, there are numerous learning and programming environments that are based on the constructionist ideas. Modern tools offer opportunities for students to learn in motivating ways and gain impressive results in programming games, animations, implementing 3D models or developing interactive objects. This article gives an overview of computer science education research related to tools and media to be used in educational settings. We analyse different types of tools with a special focus on the categorization and development of tools for student adequate physical computing activities in the classroom. Research around the development and evaluation of tools and learning resources in the domain of physical computing is illustrated with the example of "My Interactive Garden", a constructionist learning and programming environment. It is explained how the results from empirical studies are integrated in the continuous development of the learning material.
The Internet of Things (IoT) is a system of physical objects that can be discovered, monitored, controlled, or interacted with by electronic devices that communicate over various networking interfaces and eventually can be connected to the wider Internet. [Guinard and Trifa, 2016]. IoT devices are equipped with sensors and/or actuators and may be constrained in terms of memory, computational power, network bandwidth, and energy. Interoperability can help to manage such heterogeneous devices. Interoperability is the ability of different types of systems to work together smoothly. There are four levels of interoperability: physical, network and transport, integration, and data. The data interoperability is subdivided into syntactic and semantic data. Semantic data describes the meaning of data and the common understanding of vocabulary e.g. with the help of dictionaries, taxonomies, ontologies. To achieve interoperability, semantic interoperability is necessary.
Many organizations and companies are working on standards and solutions for interoperability in the IoT. However, the commercial solutions produce a vendor lock-in. They focus on centralized approaches such as cloud-based solutions. This thesis proposes a decentralized approach namely Edge Computing. Edge Computing is based on the concepts of mesh networking and distributed processing. This approach has an advantage that information collection and processing are placed closer to the sources of this information. The goals are to reduce traffic, latency, and to be robust against a lossy or failed Internet connection.
We see management of IoT devices from the network configuration management perspective. This thesis proposes a framework for network configuration management of heterogeneous, constrained IoT devices by using semantic descriptions for interoperability. The MYNO framework is an acronym for MQTT, YANG, NETCONF and Ontology. The NETCONF protocol is the IETF standard for network configuration management. The MQTT protocol is the de-facto standard in the IoT. We picked up the idea of the NETCONF-MQTT bridge, originally proposed by Scheffler and Bonneß[2017], and extended it with semantic device descriptions. These device descriptions provide a description of the device capabilities. They are based on the oneM2M Base ontology and formalized by the Semantic Web Standards.
The novel approach is using a ontology-based device description directly on a constrained device in combination with the MQTT protocol. The bridge was extended in order to query such descriptions. Using a semantic annotation, we achieved that the device capabilities are self-descriptive, machine readable and re-usable.
The concept of a Virtual Device was introduced and implemented, based on semantic device descriptions. A Virtual Device aggregates the capabilities of all devices at the edge network and contributes therefore to the scalability. Thus, it is possible to control all devices via a single RPC call.
The model-driven NETCONF Web-Client is generated automatically from this YANG model which is generated by the bridge based on the semantic device description. The Web-Client provides a user-friendly interface, offers RPC calls and displays sensor values. We demonstrate the feasibility of this approach in different use cases: sensor and actuator scenarios, as well as event configuration and triggering.
The semantic approach results in increased memory overhead. Therefore, we evaluated CBOR and RDF HDT for optimization of ontology-based device descriptions for use on constrained devices. The evaluation shows that CBOR is not suitable for long strings and RDF HDT is a promising candidate but is still a W3C Member Submission. Finally, we used an optimized JSON-LD format for the syntax of the device descriptions.
One of the security tasks of network management is the distribution of firmware updates. The MYNO Update Protocol (MUP) was developed and evaluated on constrained devices CC2538dk and 6LoWPAN. The MYNO update process is focused on freshness and authenticity of the firmware. The evaluation shows that it is challenging but feasible to bring the firmware updates to constrained devices using MQTT. As a new requirement for the next MQTT version, we propose to add a slicing feature for the better support of constrained devices. The MQTT broker should slice data to the maximum packet size specified by the device and transfer it slice-by-slice.
For the performance and scalability evaluation of MYNO framework, we setup the High Precision Agriculture demonstrator with 10 ESP-32 NodeMCU boards at the edge of the network. The ESP-32 NodeMCU boards, connected by WLAN, were equipped with six sensors and two actuators. The performance evaluation shows that the processing of ontology-based descriptions on a Raspberry Pi 3B with the RDFLib is a challenging task regarding computational power. Nevertheless, it is feasible because it must be done only once per device during the discovery process.
The MYNO framework was tested with heterogeneous devices such as CC2538dk from Texas Instruments, Arduino Yún Rev 3, and ESP-32 NodeMCU, and IP-based networks such as 6LoWPAN and WLAN.
Summarizing, with the MYNO framework we could show that the semantic approach on constrained devices is feasible in the IoT.
Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using insights from behavioral analysis and label analysis. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. These mappings are further reduced using techniques from natural language processing, which allow for a matching based on labels and external knowledge sources. The evaluation with synthetic and real-life data demonstrates the effectiveness of the approach and its robustness toward non-conforming execution logs.
Novel two-dimensional tactile displays enable blind users to not only get access to the textual but also to the graphical content of a graphical user interface. Due to the higher amount of information that can be presented in parallel, orientation and exploration can be more complex. In this paper we present the HyperBraille system, which consists of a pin-matrix device as well as a graphical screen reader providing the user with appropriate presentation and interaction possibilities. To allow for a detailed analysis of bimanual interaction strategies on a pin-matrix device, we conducted two user studies with a total of 12 blind people. The task was to fill in .pdf forms on the pin-matrix device by using different input methods, namely gestures, built-in hardware buttons as well as a conventional PC keyboard. The forms were presented in a semigraphic view type that not only contains Braille but also tactile widgets in a spatial arrangement. While completion time and error rate partly depended on the chosen input method, the usage of special reading strategies seemed to be independent of it. A direct comparison of the system and a conventional assistive technology (screen reader with single-line Braille device) showed that interaction on the pin-matrix device can be very efficient if the user is trained. The two-dimensional output can improve access to .pdf forms with insufficient accessibility as the mapping of input controls and the corresponding labels can be supported by a spatial presentation.
Automated storage and retrieval systems are principal components of modern production and warehouse facilities. In particular, automated guided vehicles nowadays substitute human-operated pallet trucks in transporting production materials between storage locations and assembly stations. While low-level control systems take care of navigating such driverless vehicles along programmed routes and avoid collisions even under unforeseen circumstances, in the common case of multiple vehicles sharing the same operation area, the problem remains how to set up routes such that a collection of transport tasks is accomplished most effectively. We address this prevalent problem in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer of commercial vehicles, where routes for automated guided vehicles used in the production process have traditionally been hand-coded by human engineers. Such adhoc methods may suffice as long as a running production process remains in place, while any change in the factory layout or production targets necessitates tedious manual reconfiguration, not to mention the missing portability between different production plants. Unlike this, we propose a declarative approach based on Answer Set Programming to optimize the routes taken by automated guided vehicles for accomplishing transport tasks. The advantages include a transparent and executable problem formalization, provable optimality of routes relative to objective criteria, as well as elaboration tolerance towards particular factory layouts and production targets. Moreover, we demonstrate that our approach is efficient enough to deal with the transport tasks evolving in realistic production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH.
Research publications and data nowadays should be publicly available on the internet and, theoretically, usable for everyone to develop further research, products, or services. The long-term accessibility of research data is, therefore, fundamental in the economy of the research production process. However, the availability of data is not sufficient by itself, but also their quality must be verifiable. Measures to ensure reuse and reproducibility need to include the entire research life cycle, from the experimental design to the generation of data, quality control, statistical analysis, interpretation, and validation of the results. Hence, high-quality records, particularly for providing a string of documents for the verifiable origin of data, are essential elements that can act as a certificate for potential users (customers). These records also improve the traceability and transparency of data and processes, therefore, improving the reliability of results. Standards for data acquisition, analysis, and documentation have been fostered in the last decade driven by grassroot initiatives of researchers and organizations such as the Research Data Alliance (RDA). Nevertheless, what is still largely missing in the life science academic research are agreed procedures for complex routine research workflows. Here, well-crafted documentation like standard operating procedures (SOPs) offer clear direction and instructions specifically designed to avoid deviations as an absolute necessity for reproducibility. Therefore, this paper provides a standardized workflow that explains step by step how to write an SOP to be used as a starting point for appropriate research documentation.
Research publications and data nowadays should be publicly available on the internet and, theoretically, usable for everyone to develop further research, products, or services. The long-term accessibility of research data is, therefore, fundamental in the economy of the research production process. However, the availability of data is not sufficient by itself, but also their quality must be verifiable. Measures to ensure reuse and reproducibility need to include the entire research life cycle, from the experimental design to the generation of data, quality control, statistical analysis, interpretation, and validation of the results. Hence, high-quality records, particularly for providing a string of documents for the verifiable origin of data, are essential elements that can act as a certificate for potential users (customers). These records also improve the traceability and transparency of data and processes, therefore, improving the reliability of results. Standards for data acquisition, analysis, and documentation have been fostered in the last decade driven by grassroot initiatives of researchers and organizations such as the Research Data Alliance (RDA). Nevertheless, what is still largely missing in the life science academic research are agreed procedures for complex routine research workflows. Here, well-crafted documentation like standard operating procedures (SOPs) offer clear direction and instructions specifically designed to avoid deviations as an absolute necessity for reproducibility. Therefore, this paper provides a standardized workflow that explains step by step how to write an SOP to be used as a starting point for appropriate research documentation.
Institutionelle Bildung ist für autistische Lernende mit vielgestaltigen und spezifischen Hindernissen verbunden. Dies gilt insbesondere im Zusammenhang mit Inklusion, deren Relevanz nicht zuletzt durch das Übereinkommen der Vereinten Nationen über die Rechte von Menschen mit Behinderung gegeben ist.
Diese Arbeit diskutiert zahlreiche lernrelevante Besonderheiten im Kontext von Autismus und zeigt Diskrepanzen zu den nicht immer ausreichend angemessenen institutionellen Lehrkonzepten. Eine zentrale These ist hierbei, dass die ungewöhnlich intensive Aufmerksamkeit von Autist*innen für ihre Spezialinteressen dafür genutzt werden kann, das Lernen mit fremdgestellten Inhalten zu erleichtern. Darauf aufbauend werden Lösungsansätze diskutiert, welche in einem neuartigen Konzept für ein digitales mehrgerätebasiertes Lernspiel resultieren.
Eine wesentliche Herausforderung bei der Konzeption spielbasierten Lernens besteht in der adäquaten Einbindung von Lerninhalten in einen fesselnden narrativen Kontext. Am Beispiel von Übungen zur emotionalen Deutung von Mimik, welche für das Lernen von sozioemotionalen Kompetenzen besonders im Rahmen von Therapiekonzepten bei Autismus Verwendung finden, wird eine angemessene Narration vorgestellt, welche die störungsarme Einbindung dieser sehr speziellen Lerninhalte ermöglicht.
Die Effekte der einzelnen Konzeptionselemente werden anhand eines prototypisch entwickelten Lernspiels untersucht. Darauf aufbauend zeigt eine quantitative Studie die gute Akzeptanz und Nutzerfreundlichkeit des Spiels und belegte vor allem die
Verständlichkeit der Narration und der Spielelemente. Ein weiterer Schwerpunkt liegt in der minimalinvasiven Untersuchung möglicher Störungen des Spielerlebnisses durch den Wechsel zwischen verschiedenen Endgeräten, für die ein innovatives Messverfahren entwickelt wurde.
Im Ergebnis beleuchtet diese Arbeit die Bedeutung und die Grenzen von spielbasierten Ansätzen für autistische Lernende. Ein großer Teil der vorgestellten Konzepte lässt sich auf andersartige Lernszenarien übertragen. Das dafür entwickelte technische Framework zur Realisierung narrativer Lernpfade ist ebenfalls darauf vorbereitet, für weitere Lernszenarien, gerade auch im institutionellen Kontext, Verwendung zu finden.
The soft error rate (SER) due to heavy-ion irradiation of a clock tree is investigated in this paper. A method for clock tree SER prediction is developed, which employs a dedicated soft error analysis tool to characterize the single-event transient (SET) sensitivities of clock inverters and other commercial tools to calculate the SER through fault-injection simulations. A test circuit including a flip-flop chain and clock tree in a 65 nm CMOS technology is developed through the automatic ASIC design flow. This circuit is analyzed with the developed method to calculate its clock tree SER. In addition, this circuit is implemented in a 65 nm test chip and irradiated by heavy ions to measure its SER resulting from the SETs in the clock tree. The experimental and calculation results of this case study present good correlation, which verifies the effectiveness of the developed method.
The aim of our project design space exploration with answer set programming is to develop a general framework based on Answer Set Programming (ASP) that finds valid solutions to the system design problem and simultaneously performs Design Space Exploration (DSE) to find the most favorable alternatives. We leverage recent developments in ASP solving that allow for tight integration of background theories to create a holistic framework for effective DSE.
The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems.
Answer Set Programming faces an increasing popularity for problem solving in various domains. While its modeling language allows us to express many complex problems in an easy way, its solving technology enables their effective resolution. In what follows, we detail some of the key factors of its success. Answer Set Programming [ASP; Brewka et al. Commun ACM 54(12):92–103, (2011)] is seeing a rapid proliferation in academia and industry due to its easy and flexible way to model and solve knowledge-intense combinatorial (optimization) problems. To this end, ASP offers a high-level modeling language paired with high-performance solving technology. As a result, ASP systems provide out-off-the-box, general-purpose search engines that allow for enumerating (optimal) solutions. They are represented as answer sets, each being a set of atoms representing a solution. The declarative approach of ASP allows a user to concentrate on a problem’s specification rather than the computational means to solve it. This makes ASP a prime candidate for rapid prototyping and an attractive tool for teaching key AI techniques since complex problems can be expressed in a succinct and elaboration tolerant way. This is eased by the tuning of ASP’s modeling language to knowledge representation and reasoning (KRR). The resulting impact is nicely reflected by a growing range of successful applications of ASP [Erdem et al. AI Mag 37(3):53–68, 2016; Falkner et al. Industrial applications of answer set programming. K++nstliche Intelligenz (2018)]
THIS INSTALLMENT OF Research for Practice provides curated reading guides to technology for underserved communities and to new developments in personal fabrication. First, Tawanna Dillahunt describes design considerations and technology for underserved and impoverished communities. Designing for the more than 1.6 billion impoverished individuals worldwide requires special consideration of community needs, constraints, and context. Her selections span protocols for poor-quality communication networks, community-driven content generation, and resource and public service discovery. Second, Stefanie Mueller and Patrick Baudisch provide an overview of recent advances in personal fabrication (for example, 3D printers).
In vielen Studiengängen kommt es durch die oft heterogenen Vorkenntnisse in der Studieneingangsphase zu mangelnder Motivation durch Über- oder Unterforderung. Dieses Problem tritt auch in der musiktheoretischen Grundausbildung an Hochschulen auf. Durch Einsatz von Elementen, die aus dem Unterhaltungskontext geläufig sind, kann eine Steigerung der Motivation erreicht werden. Die Nutzung solcher Elemente wird als Gamification bezeichnet.
Das Ziel der vorliegenden Arbeit ist es, am Fallbeispiel der musiktheoretischen Grundausbildung zu analysieren, ob Lerngelegenheiten durch einen gamifizierten interaktiven Prototyp einer Lernumgebung unterstützt werden können. Dazu wird die folgende Forschungsfrage gestellt: Inwieweit wirkt Gamification auf die Motivation bei den Lernenden zur Beschäftigung mit dem Thema (musikalische) Funktionsanalyse?
Um die Forschungsfragen zu beantworten, wurde zunächst ein systematisches, theoriegeleitetes Vorgehensmodell zur Gamification von Lernumgebungen entwickelt und angewandt. Der so entstandene Prototyp wurde anschließend um alle Game-Design-Elemente reduziert und im Rahmen einer experimentellen Studie mit zwei unabhängigen Versuchsgruppen mit der gamifizierten Variante verglichen.
Die Untersuchung zeigte, dass die Gamification einer Lernanwendung nach dem entwickelten Vorgehensmodell grundsätzlich das Potenzial besitzt, manche Aspekte des Nutzungserlebnisses (UX) positiv zu beeinflussen. Insbesondere hatte die Gamification positive Effekte auf die Joy of Use und die Immersivität. Allerdings blieb das Ausmaß der beobachteten Effekte deutlich hinter den Erwartungen zurück, die auf Basis verschiedener Motivationstheorien getroffen wurden.
Daher erscheint Gamification besonders in außeruniversitären Kontexten vielversprechend, in denen der Fokus auf einer Erhöhung der Joy of Use oder einer Steigerung der Immersivität liegt. Allerdings lassen sich durch die Untersuchung neue Erkenntnisse zur emotionalen Wirkung von Gamification und zu einem systematischen Vorgehen bei der Gamification von Lernanwendungen herausstellen.
Weiterführende Forschung könnte an diese Erkenntnisse anknüpfen, indem sie die emotionale Wirkung von Gamification und deren Einfluss auf die Motivation näher untersucht. Darüber hinaus sollte sie Gamification auch aus einer entscheidungstheoretischen Perspektive betrachten und Analysemethoden entwickeln, mit denen entschieden werden kann, ob der Einsatz von Gamification zur Motivationssteigerung in einem spezifischen Anwendungsfall zielführend ist. Unter Verwendung des entwickelten Vorgehensmodells kann es sinnvoll sein, näher zu untersuchen, welche Faktoren insgesamt für das Gelingen einer Gamification-Maßnahme in Bildungskontexten entscheidend sind. Die Erkenntnisse einer solchen Untersuchung könnten entscheidend zur Verbesserung und Validierung des Vorgehensmodells beitragen.
In the last decades, there was a notable progress in solving the well-known Boolean satisfiability (Sat) problem, which can be witnessed by powerful Sat solvers. One of the reasons why these solvers are so fast are structural properties of instances that are utilized by the solver’s interna. This thesis deals with the well-studied structural property treewidth, which measures the closeness of an instance to being a tree. In fact, there are many problems parameterized by treewidth that are solvable in polynomial time in the instance size when parameterized by treewidth.
In this work, we study advanced treewidth-based methods and tools for problems in knowledge representation and reasoning (KR). Thereby, we provide means to establish precise runtime results (upper bounds) for canonical problems relevant to KR. Then, we present a new type of problem reduction, which we call decomposition-guided (DG) that
allows us to precisely monitor the treewidth when reducing from one problem to another problem. This new reduction type will be the basis for a long-open lower bound result for quantified Boolean formulas and allows us to design a new methodology for establishing runtime lower bounds for problems parameterized by treewidth.
Finally, despite these lower bounds, we provide an efficient implementation of algorithms that adhere to treewidth. Our approach finds suitable abstractions of instances, which are subsequently refined in a recursive fashion, and it uses Sat solvers for solving subproblems. It turns out that our resulting solver is quite competitive for two canonical counting problems related to Sat.
Discriminative Models for Biometric Identification using Micro- and Macro-Movements of the Eyes
(2021)
Human visual perception is an active process. Eye movements either alternate between fixations and saccades or follow a smooth pursuit movement in case of moving targets. Besides these macroscopic gaze patterns, the eyes perform involuntary micro-movements during fixations which are commonly categorized into micro-saccades, drift and tremor. Eye movements are frequently studied in cognitive psychology, because they reflect a complex interplay of perception, attention and oculomotor control.
A common insight of psychological research is that macro-movements are highly individual. Inspired by this finding, there has been a considerable amount of prior research on oculomotoric biometric identification. However, the accuracy of known approaches is too low and the time needed for identification is too long for any practical application. This thesis explores discriminative models for the task of biometric identification.
Discriminative models optimize a quality measure of the predictions and are usually superior to generative approaches in discriminative tasks. However, using discriminative models requires to select a suitable form of data representation for sequential eye gaze data; i.e., by engineering features or constructing a sequence kernel and the performance of the classification model strongly depends on the data representation. We study two fundamentally different ways of representing eye gaze within a discriminative framework. In the first part of this thesis, we explore the integration of data and psychological background knowledge in the form of generative models to construct representations. To this end, we first develop generative statistical models of gaze behavior during reading and scene viewing that account for viewer-specific distributional properties of gaze patterns. In a second step, we develop a discriminative identification model by deriving Fisher kernel functions from these and several baseline models. We find that an SVM with Fisher kernel is able to reliably identify users based on their eye gaze during reading and scene viewing. However, since the generative models are constrained to use low-frequency macro-movements, they discard a significant amount of information contained in the raw eye tracking signal at a high cost: identification requires about one minute of input recording, which makes it inapplicable for real world biometric systems. In the second part of this thesis, we study a purely data-driven modeling approach. Here, we aim at automatically discovering the individual pattern hidden in the raw eye tracking signal. To this end, we develop a deep convolutional neural network DeepEyedentification that processes yaw and pitch gaze velocities and learns a representation end-to-end. Compared to prior work, this model increases the identification accuracy by one order of magnitude and the time to identification decreases to only seconds. The DeepEyedentificationLive model further improves upon the identification performance by processing binocular input and it also detects presentation-attacks.
We find that by learning a representation, the performance of oculomotoric identification and presentation-attack detection can be driven close to practical relevance for biometric applications. Eye tracking devices with high sampling frequency and precision are expensive and the applicability of eye movement as a biometric feature heavily depends on cost of recording devices.
In the last part of this thesis, we therefore study the requirements on data quality by evaluating the performance of the DeepEyedentificationLive network under reduced spatial and temporal resolution. We find that the method still attains a high identification accuracy at a temporal resolution of only 250 Hz and a precision of 0.03 degrees. Reducing both does not have an additive deteriorating effect.
In this paper, we consider the computational power of a new variant of networks of splicing processors in which each processor as well as the data navigating throughout the network are now considered to be polarized. While the polarization of every processor is predefined (negative, neutral, positive), the polarization of data is dynamically computed by means of a valuation mapping. Consequently, the protocol of communication is naturally defined by means of this polarization. We show that networks of polarized splicing processors (NPSP) of size 2 are computationally complete, which immediately settles the question of designing computationally complete NPSPs of minimal size. With two more nodes we can simulate every nondeterministic Turing machine without increasing the time complexity. Particularly, we prove that NPSP of size 4 can accept all languages in NP in polynomial time. Furthermore, another computational model that is universal, namely the 2-tag system, can be simulated by NPSP of size 3 preserving the time complexity. All these results can be obtained with NPSPs with valuations in the set as well. We finally show that Turing machines can simulate a variant of NPSPs and discuss the time complexity of this simulation.
The business problem of having inefficient processes, imprecise process analyses, and simulations as well as non-transparent artificial neuronal network models can be overcome by an easy-to-use modeling concept. With the aim of developing a flexible and efficient approach to modeling, simulating, and optimizing processes, this paper proposes a flexible Concept of Neuronal Modeling (CoNM). The modeling concept, which is described by the modeling language designed and its mathematical formulation and is connected to a technical substantiation, is based on a collection of novel sub-artifacts. As these have been implemented as a computational model, the set of CoNM tools carries out novel kinds of Neuronal Process Modeling (NPM), Neuronal Process Simulations (NPS), and Neuronal Process Optimizations (NPO). The efficacy of the designed artifacts was demonstrated rigorously by means of six experiments and a simulator of real industrial production processes.
Metabolic networks play a crucial role in biology since they capture all chemical reactions in an organism. While there are networks of high quality for many model organisms, networks for less studied organisms are often of poor quality and suffer from incompleteness. To this end, we introduced in previous work an answer set programming (ASP)-based approach to metabolic network completion. Although this qualitative approach allows for restoring moderately degraded networks, it fails to restore highly degraded ones. This is because it ignores quantitative constraints capturing reaction rates. To address this problem, we propose a hybrid approach to metabolic network completion that integrates our qualitative ASP approach with quantitative means for capturing reaction rates. We begin by formally reconciling existing stoichiometric and topological approaches to network completion in a unified formalism. With it, we develop a hybrid ASP encoding and rely upon the theory reasoning capacities of the ASP system dingo for solving the resulting logic program with linear constraints over reals. We empirically evaluate our approach by means of the metabolic network of Escherichia coli. Our analysis shows that our novel approach yields greatly superior results than obtainable from purely qualitative or quantitative approaches.
In recent years, named entity linking (NEL) tools were primarily developed in terms of a general approach, whereas today numerous tools are focusing on specific domains such as e.g. the mapping of persons and organizations only, or the annotation of locations or events in microposts. However, the available benchmark datasets necessary for the evaluation of NEL tools do not reflect this focalizing trend. We have analyzed the evaluation process applied in the NEL benchmarking framework GERBIL [in: Proceedings of the 24th International Conference on World Wide Web (WWW’15), International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 2015, pp. 1133–1143, Semantic Web 9(5) (2018), 605–625] and all its benchmark datasets. Based on these insights we have extended the GERBIL framework to enable a more fine grained evaluation and in depth analysis of the available benchmark datasets with respect to different emphases. This paper presents the implementation of an adaptive filter for arbitrary entities and customized benchmark creation as well as the automated determination of typical NEL benchmark dataset properties, such as the extent of content-related ambiguity and diversity. These properties are integrated on different levels, which also enables to tailor customized new datasets out of the existing ones by remixing documents based on desired emphases. Besides a new system library to enrich provided NIF [in: International Semantic Web Conference (ISWC’13), Lecture Notes in Computer Science, Vol. 8219, Springer, Berlin, Heidelberg, 2013, pp. 98–113] datasets with statistical information, best practices for dataset remixing are presented, and an in depth analysis of the performance of entity linking systems on special focus datasets is presented.
Detect me if you can
(2019)
Spam Bots have become a threat to online social networks with their malicious behavior, posting misinformation messages and influencing online platforms to fulfill their motives. As spam bots have become more advanced over time, creating algorithms to identify bots remains an open challenge. Learning low-dimensional embeddings for nodes in graph structured data has proven to be useful in various domains. In this paper, we propose a model based on graph convolutional neural networks (GCNN) for spam bot detection. Our hypothesis is that to better detect spam bots, in addition to defining a features set, the social graph must also be taken into consideration. GCNNs are able to leverage both the features of a node and aggregate the features of a node’s neighborhood. We compare our approach, with two methods that work solely on a features set and on the structure of the graph. To our knowledge, this work is the first attempt of using graph convolutional neural networks in spam bot detection.
In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.
A distinguishing feature of Answer Set Programming is that all atoms belonging to a stable model must be founded. That is, an atom must not only be true but provably true. This can be made precise by means of the constructive logic of Here-and-There, whose equilibrium models correspond to stable models. One way of looking at foundedness is to regard Boolean truth values as ordered by letting true be greater than false. Then, each Boolean variable takes the smallest truth value that can be proven for it. This idea was generalized by Aziz to ordered domains and applied to constraint satisfaction problems. As before, the idea is that a, say integer, variable gets only assigned to the smallest integer that can be justified. In this paper, we present a logical reconstruction of Aziz’ idea in the setting of the logic of Here-and-There. More precisely, we start by defining the logic of Here-and-There with lower bound founded variables along with its equilibrium models and elaborate upon its formal properties. Finally, we compare our approach with related ones and sketch future work.
Digitalisierung ermöglicht es uns, mit Partnern (z.B. Unternehmen, Institutionen) in einer IT-unterstützten Umgebung zu interagieren und Tätigkeiten auszuführen, die vormals manuell erledigt wurden. Ein Ziel der Digitalisierung ist dabei, Dienstleistungen unterschiedlicher fachlicher Domänen zu Prozessen zu kombinieren und vielen Nutzergruppen bedarfsgerecht zugänglich zu machen. Hierzu stellen Anbieter technische Dienste bereit, die in unterschiedliche Anwendungen integriert werden können.
Die Digitalisierung stellt die Anwendungsentwicklung vor neue Herausforderungen. Ein Aspekt ist die bedarfsgerechte Anbindung von Nutzern an Dienste. Zur Interaktion menschlicher Nutzer mit den Diensten werden Benutzungsschnittstellen benötigt, die auf deren Bedürfnisse zugeschnitten sind. Hierzu werden Varianten für spezifische Nutzergruppen (fachliche Varianten) und variierende Umgebungen (technische Varianten) benötigt. Zunehmend müssen diese mit Diensten anderer Anbieter kombiniert werden können, um domänenübergreifend Prozesse zu Anwendungen mit einem erhöhten Mehrwert für den Endnutzer zu verknüpfen (z.B. eine Flugbuchung mit einer optionalen Reiseversicherung).
Die Vielfältigkeit der Varianten lässt die Erstellung von Benutzungsschnittstellen komplex und die Ergebnisse sehr individuell erscheinen. Daher werden die Varianten in der Praxis vorwiegend manuell erstellt. Dies führt zur parallelen Entwicklung einer Vielzahl sehr ähnlicher Anwendungen, die nur geringes Potential zur Wiederverwendung besitzen. Die Folge sind hohe Aufwände bei Erstellung und Wartung. Dadurch wird häufig auf die Unterstützung kleiner Nutzerkreise mit speziellen Anforderungen verzichtet (z.B. Menschen mit physischen Einschränkungen), sodass diese weiterhin von der Digitalisierung ausgeschlossen bleiben.
Die Arbeit stellt eine konsistente Lösung für diese neuen Herausforderungen mit den Mitteln der modellgetriebenen Entwicklung vor. Sie präsentiert einen Ansatz zur Modellierung von Benutzungsschnittstellen, Varianten und Kompositionen und deren automatischer Generierung für digitale Dienste in einem verteilten Umfeld. Die Arbeit schafft eine Lösung zur Wiederverwendung und gemeinschaftlichen Nutzung von Benutzungsschnittstellen über Anbietergrenzen hinweg. Sie führt zu einer Infrastruktur, in der eine Vielzahl von Anbietern ihre Expertise in gemeinschaftliche Anwendungen einbringen können.
Die Beiträge bestehen im Einzelnen in Konzepten und Metamodellen zur Modellierung von Benutzungsschnittstellen, Varianten und Kompositionen sowie einem Verfahren zu deren vollständig automatisierten Transformation in funktionale Benutzungsschnittstellen. Zur Umsetzung der gemeinschaftlichen Nutzbarkeit werden diese ergänzt um eine universelle Repräsentation der Modelle, einer Methodik zur Anbindung unterschiedlicher Dienst-Anbieter sowie einer Architektur zur verteilten Nutzung der Artefakte und Verfahren in einer dienstorientierten Umgebung.
Der Ansatz bietet die Chance, unterschiedlichste Menschen bedarfsgerecht an der Digitalisierung teilhaben zu lassen. Damit setzt die Arbeit Impulse für zukünftige Methoden zur Anwendungserstellung in einem zunehmend vielfältigen Umfeld.
Zum Einfluss von Adaptivität auf die Wahrnehmung von Komplexität in der Mensch-Technik-Interaktion
(2021)
Wir leben in einer Gesellschaft, die von einem stetigen Wunsch nach Innovation und Fortschritt geprägt ist. Folgen dieses Wunsches sind die immer weiter fortschreitende Digitalisierung und informatische Vernetzung aller Lebensbereiche, die so zu immer komplexeren sozio-technischen Systemen führen. Ziele dieser Systeme sind u. a. die Unterstützung von Menschen, die Verbesserung ihrer Lebenssituation oder Lebensqualität oder die Erweiterung menschlicher Möglichkeiten. Doch haben neue komplexe technische Systeme nicht nur positive soziale und gesellschaftliche Effekte. Oft gibt es unerwünschte Nebeneffekte, die erst im Gebrauch sichtbar werden, und sowohl Konstrukteur*innen als auch Nutzer*innen komplexer vernetzter Technologien fühlen sich oft orientierungslos. Die Folgen können von sinkender Akzeptanz bis hin zum kompletten Verlust des Vertrauens in vernetze Softwaresysteme reichen. Da komplexe Anwendungen, und damit auch immer komplexere Mensch-Technik-Interaktionen, immer mehr an Relevanz gewinnen, ist es umso wichtiger, wieder Orientierung zu finden. Dazu müssen wir zuerst diejenigen Elemente identifizieren, die in der Interaktion mit vernetzten sozio-technischen Systemen zu Komplexität beitragen und somit Orientierungsbedarf hervorrufen.
Mit dieser Arbeit soll ein Beitrag geleistet werden, um ein strukturiertes Reflektieren über die Komplexität vernetzter sozio-technischer Systeme im gesamten Konstruktionsprozess zu ermöglichen. Dazu wird zuerst eine Definition von Komplexität und komplexen Systemen erarbeitet, die über das informatische Verständnis von Komplexität (also der Kompliziertheit von Problemen, Algorithmen oder Daten) hinausgeht. Im Vordergrund soll vielmehr die sozio-technische Interaktion mit und in komplexen vernetzten Systemen stehen. Basierend auf dieser Definition wird dann ein Analysewerkzeug entwickelt, welches es ermöglicht, die Komplexität in der Interaktion mit sozio-technischen Systemen sichtbar und beschreibbar zu machen.
Ein Bereich, in dem vernetzte sozio-technische Systeme zunehmenden Einzug finden, ist jener digitaler Bildungstechnologien. Besonders adaptiven Bildungstechnologien wurde in den letzten Jahrzehnten ein großes Potential zugeschrieben. Zwei adaptive Lehr- bzw. Trainingssysteme sollen deshalb exemplarisch mit dem in dieser Arbeit entwickelten Analysewerkzeug untersucht werden. Hierbei wird ein besonderes Augenmerkt auf den Einfluss von Adaptivität auf die Komplexität von Mensch-Technik-Interaktionssituationen gelegt. In empirischen Untersuchungen werden die Erfahrungen von Konstrukteur*innen und Nutzer*innen jener adaptiver Systeme untersucht, um so die entscheidenden Kriterien für Komplexität ermitteln zu können. Auf diese Weise können zum einen wiederkehrende Orientierungsfragen bei der Entwicklung adaptiver Bildungstechnologien aufgedeckt werden. Zum anderen werden als komplex wahrgenommene Interaktionssituationen identifiziert. An diesen Situationen kann gezeigt werden, wo aufgrund der Komplexität des Systems die etablierten Alltagsroutinen von Nutzenden nicht mehr ausreichen, um die Folgen der Interaktion mit dem System vollständig erfassen zu können. Dieses Wissen kann sowohl Konstrukteur*innen als auch Nutzer*innen helfen, in Zukunft besser mit der inhärenten Komplexität moderner Bildungstechnologien umzugehen.
We introduce a type and effect system, for an imperative object calculus, which infers sharing possibly introduced by the evaluation of an expression, represented as an equivalence relation among its free variables. This direct representation of sharing effects at the syntactic level allows us to express in a natural way, and to generalize, widely-used notions in literature, notably uniqueness and borrowing. Moreover, the calculus is pure in the sense that reduction is defined on language terms only, since they directly encode store. The advantage of this non-standard execution model with respect to a behaviorally equivalent standard model using a global auxiliary structure is that reachability relations among references are partly encoded by scoping. (C) 2018 Elsevier B.V. All rights reserved.
teaspoon
(2018)
Answer Set Programming (ASP) is an approach to declarative problem solving, combining a rich yet simple modeling language with high performance solving capacities. We here develop an ASP-based approach to curriculum-based course timetabling (CB-CTT), one of the most widely studied course timetabling problems. The resulting teaspoon system reads a CB-CTT instance of a standard input format and converts it into a set of ASP facts. In turn, these facts are combined with a first-order encoding for CB-CTT solving, which can subsequently be solved by any off-the-shelf ASP systems. We establish the competitiveness of our approach by empirically contrasting it to the best known bounds obtained so far via dedicated implementations. Furthermore, we extend the teaspoon system to multi-objective course timetabling and consider minimal perturbation problems.
Forschendes Lernen und die digitale Transformation sind zwei der wichtigsten Einflüsse auf die Entwicklung der Hochschuldidaktik im deutschprachigen Raum. Während das forschende Lernen als normative Theorie das sollen beschreibt, geben die digitalen Werkzeuge, alte wie neue, das können in vielen Bereichen vor.
In der vorliegenden Arbeit wird ein Prozessmodell aufgestellt, was den Versuch unternimmt, das forschende Lernen hinsichtlich interaktiver, gruppenbasierter Prozesse zu systematisieren. Basierend auf dem entwickelten Modell wurde ein Softwareprototyp implementiert, der den gesamten Forschungsprozess begleiten kann. Dabei werden Gruppenformation, Feedback- und Reflexionsprozesse und das Peer Assessment mit Bildungstechnologien unterstützt. Die Entwicklungen wurden in einem qualitativen Experiment eingesetzt, um Systemwissen über die Möglichkeiten und Grenzen der digitalen Unterstützung von forschendem Lernen zu gewinnen.
plasp 3
(2019)
We describe the new version of the Planning Domain Definition Language (PDDL)-to-Answer Set Programming (ASP) translator plasp. First, it widens the range of accepted PDDL features. Second, it contains novel planning encodings, some inspired by Satisfiability Testing (SAT) planning and others exploiting ASP features such as well-foundedness. All of them are designed for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats. Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed from SAT planning. As a result, plasp provides us with an ASP-based framework for studying a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical analysis that these techniques have a significant impact on the performance of ASP planning.
E-Assessment etablieren
(2020)
Elektronische Lernstandserhebungen, sogenannte E-Assessments, bieten für Lehrende und Studierende viele Vorteile z. B. hinsichtlich schneller Rückmeldungen oder kompetenzorientierter Fragenformate, und ermöglichen es, unabhängig von Ort und Zeit Prüfungen zu absolvieren. In diesem Beitrag werden die Einführung von summativen Lernstandserhebungen, sogenannter E-Klausuren, am Beispiel der Universität Potsdam, der Aufbau einer länderübergreifenden Initiative für E-Assessment sowie technische Möglichkeiten für dezentrale elektronische Klausuren vorgestellt. Dabei werden der aktuelle Stand, die Ziele und die gewählte stufenweise Umsetzungsstrategie der Universität Potsdam skizziert. Darauf aufbauend folgt eine Beschreibung des Vorgehens, der Kooperationsmöglichkeiten für den Wissens- und Erfahrungsaustausch sowie Herausforderungen der E-Assessment- Initiative. Abschließend werden verschiedene E-Klausurformen und technische Möglichkeiten zur Umsetzung komplexer Prüfungsumgebungen klassifiziert sowie mit ihren charakteristischen Vor- und Nachteilen diskutiert und eine integrierte Lösung vorgeschlagen.
Das größte der fächerübergreifenden Projekte im Potsdamer Projekt Qualitätspakt Lehre hatte die flächendeckende Etablierung von digitalen Medien als einen integralen Bestandteil von Lehre und Studium zum Gegenstand. Im Teilprojekt E-Learning in Studienbereichen (eLiS) wurden dafür Maßnahmen in den Feldern Organisations-, technische und Inhaltsentwicklung zusammengeführt. Der vorliegende Beitrag präsentiert auf Basis von Ausgangslage und Zielsetzungen die Ergebnisse rund um die Digitalisierung von Lehre und Studium an der Universität Potsdam. Exemplarisch werden fünf Dienste näher vorgestellt, die inzwischen größtenteils in den Regelbetrieb der Hochschule übergegangen sind: die Videoplattform Media.UP, die mobile App Reflect.UP, die persönliche Lernumgebung Campus. UP, das Self-Service-Portal Cook.UP und das Anzeigesystem Freiraum.UP. Dabei wird jeweils ein technischer Blick „unter die Haube“ verbunden mit einer Erläuterung der Nutzungsmöglichkeiten, denen eine aktuelle Einschätzung von Lehrenden und Studierenden der Hochschule gegenübergestellt wird. Der Beitrag schließt mit einer Einbettung der vorgestellten Entwicklungen in einen größeren Kontext und einem Ausblick auf die weiterhin anstehenden Aufgaben.
Die Setzung strategischer Ziele sowie die Zuordnung und Umsetzung dazugehörender Maßnahmen sind ein wesentliches Element, um die Innovationsfähigkeit von Organisationen zu erhalten. In den vergangenen Jahren ist auch an Hochschulen die Strategiebildung deutlich vorangetrieben worden. Dies betrifft verschiedene Handlungsfelder, und es werden verschiedene Ansätze verfolgt. Der vorliegende Beitrag greift am Beispiel der Universität Potsdam drei in den vergangenen Jahren adressierte Strategiebereiche heraus: IT, E-Learning und Forschungsdaten. Die damit verbundenen Prozesse waren in unterschiedlichem Maß von Partizipation geprägt. Die gesammelten Erfahrungen werden reflektiert, und es werden Empfehlungen für Strategieentwicklungsprozesse abgeleitet.
The Surface Water and Ocean Topography (SWOT) mission is a next generation satellite mission expected to provide a 2 km-resolution observation of the sea surface height (SSH) on a two-dimensional swath. Processing SWOT data will be challenging because of the large amount of data, the mismatch between a high spatial resolution and a low temporal resolution, and the observation errors. The present paper focuses on the reduction of the spatially structured errors of SWOT SSH data. It investigates a new error reduction method and assesses its performance in an observing system simulation experiment. The proposed error-reduction method first projects the SWOT SSH onto a subspace spanned by the SWOT spatially structured errors. This projection is removed from the SWOT SSH to obtain a detrended SSH. The detrended SSH is then processed within an ensemble data assimilation analysis to retrieve a full SSH field. In the latter step, the detrending is applied to both the SWOT data and an ensemble of model-simulated SSH fields. Numerical experiments are performed with synthetic SWOT observations and an ensemble from a North Atlantic, 1/60 degrees simulation of the ocean circulation (NATL60). The data assimilation analysis is carried out with an ensemble Kalman filter. The results are assessed with root mean square errors, power spectrum density, and spatial coherence. They show that a significant part of the large scale SWOT errors is reduced. The filter analysis also reduces the small scale errors and allows for an accurate recovery of the energy of the signal down to 25 km scales. In addition, using the SWOT nadir data to adjust the SSH detrending further reduces the errors.
A common feature in Answer Set Programming is the use of a second negation, stronger than default negation and sometimes called explicit, strong or classical negation. This explicit negation is normally used in front of atoms, rather than allowing its use as a regular operator. In this paper we consider the arbitrary combination of explicit negation with nested expressions, as those defined by Lifschitz, Tang and Turner. We extend the concept of reduct for this new syntax and then prove that it can be captured by an extension of Equilibrium Logic with this second negation. We study some properties of this variant and compare to the already known combination of Equilibrium Logic with Nelson's strong negation.
The target article discusses the question of how educational makerspaces can become places supportive of knowledge construction. This question is too often neglected by people who run makerspaces, as they mostly explain how to use different tools and focus on the creation of a product. In makerspaces, often pupils also engage in physical computing activities and thus in the creation of interactive artifacts containing embedded systems, such as smart shoes or wristbands, plant monitoring systems or drink mixing machines. This offers the opportunity to reflect on teaching physical computing in computer science education, where similarly often the creation of the product is so strongly focused upon that the reflection of the learning process is pushed into the background.
MUP
(2020)
Message Queuing Telemetry Transport (MQTT) is one of the dominating protocols for edge- and cloud-based Internet of Things (IoT) solutions. When a security vulnerability of an IoT device is known, it has to be fixed as soon as possible. This requires a firmware update procedure. In this paper, we propose a secure update protocol for MQTT-connected devices which ensures the freshness of the firmware, authenticates the new firmware and considers constrained devices. We show that the update protocol is easy to integrate in an MQTT-based IoT network using a semantic approach. The feasibility of our approach is demonstrated by a detailed performance analysis of our prototype implementation on a IoT device with 32 kB RAM. Thereby, we identify design issues in MQTT 5 which can help to improve the support of constrained devices.
MUP
(2020)
Message Queuing Telemetry Transport (MQTT) is one of the dominating protocols for edge- and cloud-based Internet of Things (IoT) solutions. When a security vulnerability of an IoT device is known, it has to be fixed as soon as possible. This requires a firmware update procedure. In this paper, we propose a secure update protocol for MQTT-connected devices which ensures the freshness of the firmware, authenticates the new firmware and considers constrained devices. We show that the update protocol is easy to integrate in an MQTT-based IoT network using a semantic approach. The feasibility of our approach is demonstrated by a detailed performance analysis of our prototype implementation on a IoT device with 32 kB RAM. Thereby, we identify design issues in MQTT 5 which can help to improve the support of constrained devices.
In a recent line of research, two familiar concepts from logic programming semantics (unfounded sets and splitting) were extrapolated to the case of epistemic logic programs. The property of epistemic splitting provides a natural and modular way to understand programs without epistemic cycles but, surprisingly, was only fulfilled by Gelfond's original semantics (G91), among the many proposals in the literature. On the other hand, G91 may suffer from a kind of self-supported, unfounded derivations when epistemic cycles come into play. Recently, the absence of these derivations was also formalised as a property of epistemic semantics called foundedness. Moreover, a first semantics proved to satisfy foundedness was also proposed, the so-called Founded Autoepistemic Equilibrium Logic (FAEEL). In this paper, we prove that FAEEL also satisfies the epistemic splitting property something that, together with foundedness, was not fulfilled by any other approach up to date. To prove this result, we provide an alternative characterisation of FAEEL as a combination of G91 with a simpler logic we called Founded Epistemic Equilibrium Logic (FEEL), which is somehow an extrapolation of the stable model semantics to the modal logic S5.
Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.
Flux-P
(2012)
Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.
Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide.
Detection of malware-infected computers and detection of malicious web domains based on their encrypted HTTPS traffic are challenging problems, because only addresses, timestamps, and data volumes are observable. The detection problems are coupled, because infected clients tend to interact with malicious domains. Traffic data can be collected at a large scale, and antivirus tools can be used to identify infected clients in retrospect. Domains, by contrast, have to be labeled individually after forensic analysis. We explore transfer learning based on sluice networks; this allows the detection models to bootstrap each other. In a large-scale experimental study, we find that the model outperforms known reference models and detects previously unknown malware, previously unknown malware families, and previously unknown malicious domains.
TrainTrap
(2020)