Refine
Language
- English (5)
Is part of the Bibliography
- yes (5)
Keywords
- transcutaneous vagus nerve stimulation (3)
- confidence (2)
- emotion (2)
- episodic memory (2)
- recognition (2)
- recollection (2)
- salivary alpha-amylase (2)
- words (2)
Institute
The Covid-19 pandemic imposed new constraints on empirical research and forced researchers to transfer from traditional laboratory research to the online environment. This study tested the validity of a web-based episodic memory paradigm by comparing participants’ memory performance for trustworthy and untrustworthy facial stimuli in a supervised laboratory setting and an unsupervised web setting. Consistent with previous results, we observed enhanced episodic memory for untrustworthy compared to trustworthy faces. Most importantly, this memory bias was comparable in the online and the laboratory experiment, suggesting that web-based procedures are a promising tool for memory research.
The Covid-19 pandemic imposed new constraints on empirical research and forced researchers to transfer from traditional laboratory research to the online environment. This study tested the validity of a web-based episodic memory paradigm by comparing participants’ memory performance for trustworthy and untrustworthy facial stimuli in a supervised laboratory setting and an unsupervised web setting. Consistent with previous results, we observed enhanced episodic memory for untrustworthy compared to trustworthy faces. Most importantly, this memory bias was comparable in the online and the laboratory experiment, suggesting that web-based procedures are a promising tool for memory research.
Previous clinical research found that invasive vagus nerve stimulation (VNS) enhanced word recognition memory in epileptic patients, an effect assumed to be related to the activation of brainstem arousal systems. In this study, we applied non-invasive transcutaneous auricular VNS (tVNS) to replicate and extend the previous work. Using a single-blind, randomized, between-subject design, 60 healthy volunteers received active or sham stimulation during a lexical decision task, in which emotional and neutral stimuli were classified as words or non-words. In a subsequent recognition memory task (1 day after stimulation), participants' memory performance on these words and their subjective memory confidence were tested. Salivary alpha-amylase (sAA) levels, a putative indirect measure of central noradrenergic activation, were also measured before and after stimulation. During encoding, pleasant words were more accurately detected than neutral and unpleasant words. However, no tVNS effects were observed on task performance or on overall sAA level changes. tVNS also did not modulate overall recognition memory, which was particularly enhanced for pleasant emotional words. However, when hit rates were split based on confidence ratings reflecting familiarity- and recollection-based memory, higher recollection-based memory performance (irrespective of emotional category) was observed during active stimulation than during sham stimulation. To summarize, we replicated prior findings of enhanced processing and memory for emotional (pleasant) words. Whereas tVNS showed no effects on word processing, subtle effects on recollection-based memory performance emerged, which may indicate that tVNS facilitates hippocampus-mediated consolidation processes.
Previous clinical research found that invasive vagus nerve stimulation (VNS) enhanced word recognition memory in epileptic patients, an effect assumed to be related to the activation of brainstem arousal systems. In this study, we applied non-invasive transcutaneous auricular VNS (tVNS) to replicate and extend the previous work. Using a single-blind, randomized, between-subject design, 60 healthy volunteers received active or sham stimulation during a lexical decision task, in which emotional and neutral stimuli were classified as words or non-words. In a subsequent recognition memory task (1 day after stimulation), participants' memory performance on these words and their subjective memory confidence were tested. Salivary alpha-amylase (sAA) levels, a putative indirect measure of central noradrenergic activation, were also measured before and after stimulation. During encoding, pleasant words were more accurately detected than neutral and unpleasant words. However, no tVNS effects were observed on task performance or on overall sAA level changes. tVNS also did not modulate overall recognition memory, which was particularly enhanced for pleasant emotional words. However, when hit rates were split based on confidence ratings reflecting familiarity- and recollection-based memory, higher recollection-based memory performance (irrespective of emotional category) was observed during active stimulation than during sham stimulation. To summarize, we replicated prior findings of enhanced processing and memory for emotional (pleasant) words. Whereas tVNS showed no effects on word processing, subtle effects on recollection-based memory performance emerged, which may indicate that tVNS facilitates hippocampus-mediated consolidation processes.