### Refine

#### Year of publication

#### Keywords

#### Institute

A theoretical famework for the investigation of the qualitative behavior of differential-algebraic equations (DAEs) near an equilibrium point is established. The key notion of our approach is the notion of regularity. A DAE is called regular locally around an equilibrium point if there is a unique vector field such that the solutions of the DAE and the vector field are in one-to-one correspondence in a neighborhood of this equili Drium point. Sufficient conditions for the regularity of an equilibrium point are stated. This in turn allows us to translate several local results, as formulated for vector fields, to DAEs that are regular locally around a g: ven equilibrium point (e.g. Local Stable and Unstable Manifold Theorem, Hopf theorem). It is important that ihese theorems are stated in terms of the given problem and not in terms of the corresponding vector field.

Technical and physical systems, especially electronic circuits, are frequently modeled as a system of differential and nonlinear implicit equations. In the literature such systems of equations are called differentialalgebraic equations (DAEs). It turns out that the numerical and analytical properties of a DAE depend on an integer called the index of the problem. For example, the well-known BDF method of Gear can be applied, in general, to a DAE only if the index does not exceed one. In this paper we give a geometric interpretation of higherindex DAEs and indicate problems arising in connection with such DAEs by means of several examples.

The subject of this paper is the relation of differential-algebraic equations (DAEs) to vector fields on manifolds. For that reason, we introduce the notion of a regular DAE as a DAE to which a vector field uniquely corresponds. Furthermore, a technique is described which yields a family of manifolds for a given DAE. This socalled family of constraint manifolds allows in turn the formulation of sufficient conditions for the regularity of a DAE. and the definition of the index of a regular DAE. We also state a method for the reduction of higher-index DAEs to lowsr-index ones that can be solved without introducing additional constants of integration. Finally, the notion of realizability of a given vector field by a regular DAE is introduced, and it is shown that any vector field can be realized by a regular DAE. Throughout this paper the problem of path-tracing is discussed as an illustration of the mathematical phenomena.

Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model
(2017)

Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts.