### Refine

#### Year of publication

#### Keywords

#### Institute

The generalized hybrid Monte Carlo (GHMC) method combines Metropolis corrected constant energy simulations with a partial random refreshment step in the particle momenta. The standard detailed balance condition requires that momenta are negated upon rejection of a molecular dynamics proposal step. The implication is a trajectory reversal upon rejection, which is undesirable when interpreting GHMC as thermostated molecular dynamics. We show that a modified detailed balance condition can be used to implement GHMC without momentum flips. The same modification can be applied to the generalized shadow hybrid Monte Carlo (GSHMC) method. Numerical results indicate that GHMC/GSHMC implementations with momentum flip display a favorable behavior in terms of sampling efficiency, i.e., the traditional GHMC/GSHMC implementations with momentum flip got the advantage of a higher acceptance rate and faster decorrelation of Monte Carlo samples. The difference is more pronounced for GHMC. We also numerically investigate the behavior of the GHMC method as a Langevin-type thermostat. We find that the GHMC method without momentum flip interferes less with the underlying stochastic molecular dynamics in terms of autocorrelation functions and it to be preferred over the GHMC method with momentum flip. The same finding applies to GSHMC.

We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.

We generalize the popular ensemble Kalman filter to an ensemble transform filter, in which the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian-mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions and the three-dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable of tracking systems with non-Gaussian uni- and multimodal ensemble distributions.

Ensemble Kalman filter techniques are widely used to assimilate observations into dynamical models. The phase- space dimension is typically much larger than the number of ensemble members, which leads to inaccurate results in the computed covariance matrices. These inaccuracies can lead, among other things, to spurious long-range correlations, which can be eliminated by Schur-product-based localization techniques. In this article, we propose a new technique for implementing such localization techniques within the class of ensemble transform/square-root Kalman filters. Our approach relies on a continuous embedding of the Kalman filter update for the ensemble members, i.e. we state an ordinary differential equation (ODE) with solutions that, over a unit time interval, are equivalent to the Kalman filter update. The ODE formulation forms a gradient system with the observations as a cost functional. Besides localization, the new ODE ensemble formulation should also find useful application in the context of nonlinear observation operators and observations that arrive continuously in time.

We present a Monte Carlo technique for sampling from the canonical distribution in molecular dynamics. The method is built upon the Nose-Hoover constant temperature formulation and the generalized hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically resampled during a Monte Carlo step.

It is well recognized that discontinuous analysis increments of sequential data assimilation systems, such as ensemble Kalman filters, might lead to spurious high-frequency adjustment processes in the model dynamics. Various methods have been devised to spread out the analysis increments continuously over a fixed time interval centred about the analysis time. Among these techniques are nudging and incremental analysis updates (IAU). Here we propose another alternative, which may be viewed as a hybrid of nudging and IAU and which arises naturally from a recently proposed continuous formulation of the ensemble Kalman analysis step. A new slow-fast extension of the popular Lorenz-96 model is introduced to demonstrate the properties of the proposed mollified ensemble Kalman filter.

We develop a multigrid, multiple time stepping scheme to reduce computational efforts for calculating complex stress interactions in a strike-slip 2D planar fault for the simulation of seismicity. The key elements of the multilevel solver are separation of length scale, grid-coarsening, and hierarchy. In this study the complex stress interactions are split into two parts: the first with a small contribution is computed on a coarse level, and the rest for strong interactions is on a fine level. This partition leads to a significant reduction of the number of computations. The reduction of complexity is even enhanced by combining the multigrid with multiple time stepping. Computational efficiency is enhanced by a factor of 10 while retaining a reasonable accuracy, compared to the original full matrix-vortex multiplication. The accuracy of solution and computational efficiency depend on a given cut-off radius that splits multiplications into the two parts. The multigrid scheme is constructed in such a way that it conserves stress in the entire half-space.

Many applications, such as intermittent data assimilation, lead to a recursive application of Bayesian inference within a Monte Carlo context. Popular data assimilation algorithms include sequential Monte Carlo methods and ensemble Kalman filters (EnKFs). These methods differ in the way Bayesian inference is implemented. Sequential Monte Carlo methods rely on importance sampling combined with a resampling step, while EnKFs utilize a linear transformation of Monte Carlo samples based on the classic Kalman filter. While EnKFs have proven to be quite robust even for small ensemble sizes, they are not consistent since their derivation relies on a linear regression ansatz. In this paper, we propose another transform method, which does not rely on any a priori assumptions on the underlying prior and posterior distributions. The new method is based on solving an optimal transportation problem for discrete random variables.

In diesem Beitrag wird der Zusammenhang zwischen Algebrodifferentialgleichungen (ADGL) und Vektorfeldern auf Mannigfaltigkeiten untersucht. Dazu wird zunächst der Begriff der regulären ADGL eingeführt, wobei unter eirter regulären ADGL eine ADGL verstanden wird, deren Lösungsmenge identisch mit der Lösungsmenge eines Vektorfeldes ist. Ausgehend von bekannten Aussagen über die Lösungsmenge eines Vektorfeldes werden analoge Aussagen für die Lösungsmenge einer regulären ADGL abgeleitet. Es wird eine Reduktionsmethode angegeben, die auf ein Kriterium für die Begularität einer ADGL und auf die Definition des Index einer nichtlinearen ADGL führt. Außerdem wird gezeigt, daß beliebige Vektorfelder durch reguläre ADGL so realisiert werden können, daß die Lösungsmenge des Vektorfeldes mit der der realisierenden ADGL identisch ist. Abschließend werden die für autonome ADGL gewonnenen Aussagen auf den Fall der nichtautonomen ADGL übertragen.

The ensemble Kalman filter has emerged as a promising filter algorithm for nonlinear differential equations subject to intermittent observations. In this paper, we extend the well-known Kalman-Bucy filter for linear differential equations subject to continous observations to the ensemble setting and nonlinear differential equations. The proposed filter is called the ensemble Kalman-Bucy filter and its performance is demonstrated for a simple mechanical model (Langevin dynamics) subject to incremental observations of its velocity.