Refine
Year of publication
Document Type
- Article (24616)
- Doctoral Thesis (5241)
- Monograph/Edited Volume (5091)
- Postprint (2424)
- Review (1788)
- Preprint (568)
- Conference Proceeding (417)
- Part of a Book (307)
- Part of Periodical (284)
- Other (250)
- Master's Thesis (175)
- Working Paper (161)
- Habilitation (59)
- Bachelor Thesis (19)
- Report (15)
- Journal/Series (14)
- Lecture (10)
- Course Material (5)
- Moving Images (4)
- Sound (1)
- Study Thesis (1)
Language
- German (22171)
- English (18372)
- Spanish (302)
- French (277)
- Russian (101)
- Italien (82)
- Multiple languages (66)
- Polish (21)
- Portuguese (18)
- Czech (15)
Keywords
- Germany (122)
- Deutschland (112)
- climate change (71)
- Patholinguistik (68)
- patholinguistics (68)
- Sprachtherapie (67)
- European Union (65)
- Europäische Union (62)
- Außenpolitik (56)
- Nachhaltigkeit (56)
Institute
- Institut für Physik und Astronomie (3669)
- Institut für Biochemie und Biologie (3557)
- Institut für Chemie (2420)
- Wirtschaftswissenschaften (2360)
- Historisches Institut (1884)
- Institut für Romanistik (1845)
- Institut für Mathematik (1745)
- Sozialwissenschaften (1702)
- Institut für Psychologie (1562)
- Institut für Erd- und Umweltwissenschaften (1283)
PaRDeS, the journal of the German Association for Jewish Studies, aims at exploring the fruitful and multifarious cultures of Judaism as well as their relations to their environment within diverse areas of research. In addition, the journal promotes Jewish Studies within academic discourse and reflects on its historic and social responsibilities.
Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.
Transcending the conventional debate around efficiency in sustainable consumption, anti-consumption patterns leading to decreased levels of material consumption have been gaining importance. Change agents are crucial for the promotion of such patterns, so there may be lessons for governance interventions that can be learnt from the every-day experiences of those who actively implement and promote sustainability in the field of anti-consumption. Eighteen social innovation pioneers, who engage in and diffuse practices of voluntary simplicity and collaborative consumption as sustainable options of anti-consumption share their knowledge and personal insights in expert interviews for this research. Our qualitative content analysis reveals drivers, barriers, and governance strategies to strengthen anti-consumption patterns, which are negotiated between the market, the state, and civil society. Recommendations derived from the interviews concern entrepreneurship, municipal infrastructures in support of local grassroots projects, regulative policy measures, more positive communication to strengthen the visibility of initiatives and emphasize individual benefits, establishing a sense of community, anti-consumer activism, and education. We argue for complementary action between top-down strategies, bottom-up initiatives, corporate activities, and consumer behavior. The results are valuable to researchers, activists, marketers, and policymakers who seek to enhance their understanding of materially reduced consumption patterns based on the real-life experiences of active pioneers in the field.
Portal
(2011)
Portal
(2010)
Portal
(2010)
Quantum field theory on curved spacetimes is understood as a semiclassical approximation of some quantum theory of gravitation, which models a quantum field under the influence of a classical gravitational field, that is, a curved spacetime. The most remarkable effect predicted by this approach is the creation of particles by the spacetime itself, represented, for instance, by Hawking's evaporation of black holes or the Unruh effect. On the other hand, these aspects already suggest that certain cornerstones of Minkowski quantum field theory, more precisely a preferred vacuum state and, consequently, the concept of particles, do not have sensible counterparts within a theory on general curved spacetimes. Likewise, the implementation of covariance in the model has to be reconsidered, as curved spacetimes usually lack any non-trivial global symmetry. Whereas this latter issue has been resolved by introducing the paradigm of locally covariant quantum field theory (LCQFT), the absence of a reasonable concept for distinct vacuum and particle states on general curved spacetimes has become manifest even in the form of no-go-theorems.
Within the framework of algebraic quantum field theory, one first introduces observables, while states enter the game only afterwards by assigning expectation values to them. Even though the construction of observables is based on physically motivated concepts, there is still a vast number of possible states, and many of them are not reasonable from a physical point of view. We infer that this notion is still too general, that is, further physical constraints are required. For instance, when dealing with a free quantum field theory driven by a linear field equation, it is natural to focus on so-called quasifree states. Furthermore, a suitable renormalization procedure for products of field operators is vitally important. This particularly concerns the expectation values of the energy momentum tensor, which correspond to distributional bisolutions of the field equation on the curved spacetime. J. Hadamard's theory of hyperbolic equations provides a certain class of bisolutions with fixed singular part, which therefore allow for an appropriate renormalization scheme.
By now, this specification of the singularity structure is known as the Hadamard condition and widely accepted as the natural generalization of the spectral condition of flat quantum field theory. Moreover, due to Radzikowski's celebrated results, it is equivalent to a local condition, namely on the wave front set of the bisolution. This formulation made the powerful tools of microlocal analysis, developed by Duistermaat and Hörmander, available for the verification of the Hadamard property as well as the construction of corresponding Hadamard states, which initiated much progress in this field. However, although indispensable for the investigation in the characteristics of operators and their parametrices, microlocal analyis is not practicable for the study of their non-singular features and central results are typically stated only up to smooth objects. Consequently, Radzikowski's work almost directly led to existence results and, moreover, a concrete pattern for the construction of Hadamard bidistributions via a Hadamard series. Nevertheless, the remaining properties (bisolution, causality, positivity) are ensured only modulo smooth functions.
It is the subject of this thesis to complete this construction for linear and formally self-adjoint wave operators acting on sections in a vector bundle over a globally hyperbolic Lorentzian manifold. Based on Wightman's solution of d'Alembert's equation on Minkowski space and the construction for the advanced and retarded fundamental solution, we set up a Hadamard series for local parametrices and derive global bisolutions from them. These are of Hadamard form and we show existence of smooth bisections such that the sum also satisfies the remaining properties exactly.