• Treffer 5 von 20
Zurück zur Trefferliste

Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity

  • We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and theWe study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr168.pdfeng
    (2261KB)

    SHA-1:b52ae9790e3ae86182a7f0e8db48b53af1f131e0

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Andrey G. CherstvyORCiD, Aleksei V. ChechkinORCiDGND, Ralf MetzlerORCiDGND
URN:urn:nbn:de:kobv:517-opus4-74021
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (paper 168)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:02.01.2014
Erscheinungsjahr:2014
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:20.03.2015
Freies Schlagwort / Tag:adenoassociated virus; anomalous diffusion; cytoplasm; endosomal escape; escherichia-coli; infection pathway; intracellular-transport; living cells; models; trafficking
Ausgabe:168
Seitenanzahl:11
Erste Seite:1591
Letzte Seite:1601
Quelle:Soft Matter, 2014, 10, S. 1591-1601 - DOI: 10.1039/c3sm52846d
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access
Lizenz (Englisch):License LogoCreative Commons - Namensnennung 3.0 Unported
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.