540 Chemie und zugeordnete Wissenschaften
Refine
Year of publication
Document Type
- Article (433)
- Doctoral Thesis (352)
- Postprint (293)
- Other (14)
- Habilitation Thesis (11)
- Review (11)
- Monograph/Edited Volume (4)
- Conference Proceeding (4)
- Master's Thesis (2)
Keywords
- Nanopartikel (24)
- self-assembly (19)
- nanoparticles (18)
- DNA origami (14)
- Selbstorganisation (13)
- RAFT (10)
- ionic liquids (10)
- thermoresponsive (10)
- Polymer (9)
- ring-opening polymerization (9)
Institute
- Institut für Chemie (954)
- Institut für Biochemie und Biologie (50)
- Institut für Ernährungswissenschaft (44)
- Mathematisch-Naturwissenschaftliche Fakultät (43)
- Extern (37)
- Institut für Physik und Astronomie (26)
- Institut für Geowissenschaften (3)
- Department Sport- und Gesundheitswissenschaften (2)
- Institut für Mathematik (2)
- Institut für Umweltwissenschaften und Geographie (2)
The development of novel programmable materials aiming to control friction in real-time holds potential to facilitate innovative lubrication solutions for reducing wear and energy losses. This work describes the integration of light-responsiveness into two lubricating materials, silicon oils and polymer brush surfaces.
The first part focusses on the assessment on 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-A) and, in particular, on the variability of rheological properties and the implications that arise with UV-light as external trigger. The applied rheometer setup contains an UV-transparent quartz-plate, which enables radiation and simultaneous measurement of the dynamic moduli. UV-A radiation (354 nm) triggers the cycloaddition reaction between the terminal functionalities of linear PDMS, resulting in chain extension. The newly-formed anthracene dimers cleave by UV-C radiation (254 nm) or at elevated temperatures (T > 130 °C). The sequential UV-A radiation and thermal reprogramming over three cycles demonstrate high conversions and reproducible programming of rheological properties. In contrast, the photochemical back reaction by UV-C is incomplete and can only partially restore the initial rheological properties. The dynamic moduli increase with each cycle in photochemical programming, presumably resulting from a chain segment re-arrangement as a result of the repeated partial photocleavage and subsequent chain length-dependent dimerization. In addition, long periods of radiation cause photooxidative degradation, which damages photo-responsive functions and consequently reduces the programming range. The absence of oxygen, however, reduces undesired side reactions. Anthracene-functionalized PDMS and native PDMS mix depending on the anthracene ester content and chain length, respectively, and allow fine-tuning of programmable rheological properties. The work shows the influence of mixing conditions during the photoprogramming step on the rheological properties, indicating that material property gradients induced by light attenuation along the beam have to be considered. Accordingly, thin lubricant films are suggested as potential application for light-programmable silicon fluids.
The second part compares strategies for the grafting of spiropyran (SP) containing copolymer brushes from Si wafers and evaluates the light-responsiveness of the surfaces. Pre-experiments on the kinetics of the thermally initiated RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and spiropyran acrylate (SPA) in solution show, first, a strong retardation by SP and, second, the dependence of SPA polymerization on light. Surprisingly, the copolymerization of SPA is inhibited in the dark. These findings contribute to improve the synthesis of polar, spiropyran-containing copolymers. The comparison between initiator systems for the grafting-from approach indicates PET-RAFT superior to thermally initiated RAFT, suggesting a more efficient initiation of surface-bound CTA by light. Surface-initiated polymerization via PET-RAFT with an initiator system of EosinY (EoY) and ascorbic acid (AscA) facilitates copolymer synthesis from HEA and 5-25 mol% SPA. The resulting polymer film with a thickness of a few nanometers was detected by atomic force microscopy (AFM) and ellipsometry. Water contact angle (CA) measurements demonstrate photo-switchable surface polarity, which is attributed to the photoisomerization between non-polar spiropyran and zwitterionic merocyanine isomer. Furthermore, the obtained spiropyran brushes show potential for further studies on light-programmable properties. In this context, it would be interesting to investigate whether swollen spiropyran-containing polymers change their configuration and thus their film thickness under the influence of light. In addition, further experiments using an AFM or microtribometer should evaluate whether light-programmable solvation enables a change in frictional properties between polymer brush surfaces.
Label-free optical sensors are attractive candidates, for example, for detecting toxic substances and monitoring biomolecular interactions. Their performance can be pushed by the design of the sensor through clever material choices and integration of components. In this work, two porous materials, namely, porous silicon and plasmonic nanohole arrays, are combined in order to obtain increased sensitivity and dual-mode sensing capabilities. For this purpose, porous silicon monolayers are prepared by electrochemical etching and plasmonic nanohole arrays are obtained using a bottom-up strategy. Hybrid sensors of these two materials are realized by transferring the plasmonic nanohole array on top of the porous silicon. Reflectance spectra of the hybrid sensors are characterized by a fringe pattern resulting from the Fabry–Pérot interference at the porous silicon borders, which is overlaid with a broad dip based on surface plasmon resonance in the plasmonic nanohole array. In addition, the hybrid sensor shows a significant higher reflectance in comparison to the porous silicon monolayer. The sensitivities of the hybrid sensor to refractive index changes are separately determined for both components. A significant increase in sensitivity from 213 ± 12 to 386 ± 5 nm/RIU is determined for the transfer of the plasmonic nanohole array sensors from solid glass substrates to porous silicon monolayers. In contrast, the spectral position of the interference pattern of porous silicon monolayers in different media is not affected by the presence of the plasmonic nanohole array. However, the changes in fringe pattern reflectance of the hybrid sensor are increased 3.7-fold after being covered with plasmonic nanohole arrays and could be used for high-sensitivity sensing. Finally, the capability of the hybrid sensor for simultaneous and independent dual-mode sensing is demonstrated.
A convenient method for the synthesis of γ-spirolactones in only 2–3 steps is described. Birch reduction of inexpensive and commercially available aromatic carboxylic acids in the presence of ethylene oxide affords hydroxy acids, which undergo direct lactonization during work-up. Suitable precursors are methyl-substituted benzoic acids, naphthoic, and dicarboxylic acids. Subsequent hydrogenation proceeds smoothly with Pd/C as catalyst and saturated γ-spirolactones are isolated in excellent yields and stereoselectivities. Thus, up to 3 new stereogenic centers can be constructed as sole diastereomers from achiral benzoic acids. Furthermore, it is possible to control the degree of saturation with Raney nickel or Wilkinson's catalyst to obtain products with 1 double bond. Overall, more than 30 new γ-spirolactones have been synthesized in analytically pure form.
Proteine erfüllen bei einer Vielzahl von Prozessen eine essenzielle Rolle. Um diese Funktionsweisen zu verstehen, bedarf es der Aufklärung derer Struktur und deren Bindungsverhaltens mit anderen Molekülen wie Proteinen, Peptiden, Kohlenhydraten oder kleinen Molekülen. Im ersten Teil dieser Arbeit wurden der Wildtyp und die Punktmutante N126W eines Kohlenhydrat-bindenden Proteins aus dem hitzestabilen Bakterium C. thermocellum untersucht, welches Teil eines Komplexes ist, der Kohlenhydrate wie Cellulose erkennen, binden und abbauen kann. Dazu wurde dieses Protein mit E.coli Bakterien hergestellt und durch Metallchelat- und Größenausschlusschromatographie gereinigt. Die Proteine konnten isotopenmarkiert mittels Kernspinresonanz-Spektroskopie (NMR) untersucht werden. H/D-Austauschexperimente zeigten leicht und schwer zugängliche Stellen im Protein für eine mögliche Ligandenwechselwirkung. Anschließend konnte eine Interaktion beider Proteine mit Cellulosefragmenten festgestellt werden. Diese interagieren über zwischenmolekulare Kräfte mit den Seitenketten von aromatischen Aminosäuren und über Wasserstoffbrückenbindungen mit anderen Resten. Weiterhin wurde die Calcium-Bindestelle analysiert und es konnte gezeigt werden, das diese nach der Proteinherstellung mit einem Calcium-Ion besetzt ist und dieses mit dem Komplexbildner EDTA entfernbar ist, jedoch wieder reversibel besetzt werden kann. Zum Schluss wurde mittels zweier Methoden versucht (grafting from und grafting to), das Protein mit einem temperatursensorischen Polymer (Poly-N-Isopropylacrylamid) zu koppeln, um so Eigenschaften wie Löslichkeit oder Stabilität zu beeinflussen. Es zeigte sich, das während die grafting from Methode (Polymer wächst direkt vom Protein) zu einer teilweisen Entfaltung und Destabilisierung des Proteins führte, bei der grafting to Methode (Polymer wird separat hergestellt und dann an das Protein gekoppelt) das Protein seine Stabilität behielt und nur wenige Polymerketten angebaut waren. Der zweite Teil dieser Arbeit beschäftigte sich mit der Interaktion von zwei LIM-Domänen des Proteins Paxillin und der zytoplasmatischen Domäne der Peptide Integrin-β1 und Integrin-β3. Diese spielen eine wichtige Rolle bei der Bewegung von Zellen. Dabei interagieren sie mit einer Vielzahl an anderen Proteinen, um fokale Adhäsionen (Multiproteinkomplexe) zu bilden. Bei der Herstellung des Peptids Integrin-β3 zeigte sich durch Größenausschlusschromatographie und Massenspektrometrie ein Abbau, bei dem verschiedene Aminosäuregruppen abgespalten werden. Dieser konnte durch eine Zugabe des Serinprotease-Inhibitors AEBSF verhindert werden. Anschließend wurde die direkte Interaktion der Proteine untereinander mittels NMR untersucht. Dabei zeigte sich, das Integrin-β1 und Integrin-β3 an die gleiche Position binden, nämlich an den flexiblen Loop der LIM3-Domäne von Paxillin. Die Dissoziationskonstanten zeigten, dass Integrin-β1 mit einer zirka zehnfach höheren Affinität im Vergleich zu Integrin-β3 an Paxillin bindet. Während Paxillins Bindestelle an Integrin-β1 in der Mitte des Peptids liegt, ist bei Integrin-β3 der C-Terminus essenziell. Daher wurden die drei C-terminalen Aminosäuren entfernt und erneut Bindungsstudien durchgeführt, welche gezeigt haben, das die Affinität dadurch fast vollständig unterbunden wurde. Final wurde der flexible Loop der LIM3-Domäne in zwei andere Aminosäuresequenzen mutiert, um die Bindung auf der Paxillin-Seite auszulöschen. Jedoch zeigten sowohl Zirkulardichroismus-Spektroskopie als auch NMR-Spektroskopie, dass die Mutationen zu einer teilweisen Entfaltung der Domäne geführt haben und somit nicht als geeignete Kandidaten für diese Studien identifiziert werden konnten.
The molecular structure and conformational preferences of 1-phenyl-1-X-1-silacyclohexanes C5H10Si(Ph,X) (X = F (3), Cl (4)) were studied by gas-phase electron diffraction, low-temperature NMR spectroscopy, and high-level quantum chemical calculations. In the gas phase only three (3) and two (4) stable conformers differing in the axial or equatorial location of the phenyl group and the angle of rotation about the Si-C-ph bond (axi and axo denote the Ph group lying in or out of the X-Si-C-ph plane) contribute to the equilibrium. In 3 the ratio Ph-eq:Ph-axo:Ph-axi is 40(12):55(24):5 and 64:20:16 by experiment and theory, respectively. In 4 the ratio Ph-eq:Ph-axo is 79(15):21(15) and 71:29 by experiment and theory (M06-2X calculations), respectively. The gas-phase electron diffraction parameters are in good agreement with those obtained from theory at the M06-2X/aug-ccPVTZ and MP2/aug-cc-pVTZ levels. Unlike the case for M06-2X, MP2 calculations indicate that 3-Ph-eq conformer lies 0.5 kcal/mol higher than the 3-Ph-axo, conformer. As follows from QTAIM analysis, the phenyl group is more stable when it is located in the axial position but produces destabilization of the silacyclohexane ring: By low temperature NMR spectroscopy the six-membered ring interconversion could be frozen, at 103 K and the present conformational equilibria of 3 and 4 could be determined. The ratio of the conformers is 3-Ph-eq:3-Ph-ax = (75-77):(23-25) and 4-Ph-eq:4-Ph-ax = 82:18.
A series of new sulfobetaine methacrylates, including nitrogen-containing saturated heterocycles, was synthesised by systematically varying the substituents of the zwitterionic group. Radical polymerisation via the RAFT (reversible addition–fragmentation chain transfer) method in trifluoroethanol proceeded smoothly and was well controlled, yielding polymers with predictable molar masses. Molar mass analysis and control of the end-group fidelity were facilitated by end-group labeling with a fluorescent dye. The polymers showed distinct thermo-responsive behaviour of the UCST (upper critical solution temperature) type in an aqueous solution, which could not be simply correlated to their molecular structure via an incremental analysis of the hydrophilic and hydrophobic elements incorporated within them. Increasing the spacer length separating the ammonium and the sulfonate groups of the zwitterion moiety from three to four carbons increased the phase transition temperatures markedly, whereas increasing the length of the spacer separating the ammonium group and the carboxylate ester group on the backbone from two to three carbons provoked the opposite effect. Moreover, the phase transition temperatures of the analogous polyzwitterions decreased in the order dimethylammonio > morpholinio > piperidinio alkanesulfonates. In addition to the basic effect of the polymers’ precise molecular structure, the concentration and the molar mass dependence of the phase transition temperatures were studied. Furthermore, we investigated the influence of added low molar mass salts on the aqueous-phase behaviour for sodium chloride and sodium bromide as well as sodium and ammonium sulfate. The strong effects evolved in a complex way with the salt concentration. The strength of these effects depended on the nature of the anion added, increasing in the order sulfate < chloride < bromide, thus following the empirical Hofmeister series. In contrast, no significant differences were observed when changing the cation, i.e. when adding sodium or ammonium sulfate.
The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine ((8Br)A) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of (8Br)A is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as (8Br)A can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation.
We present a rigorous method to set up a system-bath Hamiltonian for the coupling of adsorbate vibrations (the system) to surface phonons (the bath). The Hamiltonian is straightforward to derive and exact up to second order in the environment coordinates, thus capable of treating one- and two-phonon contributions to vibration-phonon coupling. The construction of the Hamiltonian uses orthogonal coordinates for system and bath modes, is based on an embedded cluster approach, and generalizes previous Hamiltonians of a similar type, but avoids several (additional) approximations. While the parametrization of the full Hamiltonian is in principle feasible by a first principles quantum mechanical treatment, here we adopt in the spirit of a QM/MM model a combination of density functional theory (“QM”, for the system) and a semiempirical forcefield (“MM”, for the bath). We apply the Hamiltonian to a fully H-covered Si(100)-(2 × 1) surface, using Fermi’s Golden Rule to obtain vibrational relaxation rates of various H–Si bending modes of this system. As in earlier work it is found that the relaxation is dominated by two-phonon contributions because of an energy gap between the Si–H bending modes and the Si phonon bands. We obtain vibrational lifetimes (of the first excited state) on the order of 2 ps at K. The lifetimes depend only little on the type of bending mode (symmetric vs. antisymmetric, parallel vs. perpendicular to the Si2H2 dimers). They decrease by a factor of about two when heating the surface to 300 K. We also study isotope effects by replacing adsorbed H atoms by deuterium, D. The Si–D bending modes are shifted into the Si phonon band of the solid, opening up one-phonon decay channels and reducing the lifetimes to few hundred fs.
Halloysites as tubular alumosilicates are introduced as inexpensive natural nanoparticles to form and stabilize oil-water emulsions. This stabilized emulsion is shown to enable efficient interfacial catalytic reactions. Yield, selectivity, and product separation can be tremendously enhanced, e.g., for the hydroformylation reaction of dodecene to tridecanal. In perspective, this type of formulation may be used for oil spill dispersions. The key elements of the described formulations are clay nanotubes (halloysites) which are highly anisometric, can be filled by helper molecules, and are abundantly available in thousands of tons, making this technology scalable for industrial applications.