• Treffer 4 von 114
Zurück zur Trefferliste

Edge-degenerate families of ΨDO’s on an infinite cylinder

  • We establish a parameter-dependent pseudo-differential calculus on an infinite cylinder, regarded as a manifold with conical exits to infinity. The parameters are involved in edge-degenerate form, and we formulate the operators in terms of operator-valued amplitude functions.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Jamil Abed, Bert-Wolfgang SchulzeGND
URN:urn:nbn:de:kobv:517-opus-30365
Schriftenreihe (Bandnummer):Preprint ((2009) 01)
Publikationstyp:Preprint
Sprache:Englisch
Erscheinungsjahr:2009
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:06.05.2009
Freies Schlagwort / Tag:Edge-degenerate operators; norm estimates with respect to a parameter; parameter-dependent pseudodifferential operators
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Sammlung(en):Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2009
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Externe Anmerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.