## 510 Mathematik

### Refine

#### Year of publication

#### Document Type

- Preprint (374)
- Doctoral Thesis (60)
- Postprint (34)
- Article (12)
- Monograph/Edited Volume (11)
- Part of a Book (5)
- Conference Proceeding (4)
- Master's Thesis (2)

#### Language

- English (464)
- German (34)
- French (3)
- Multiple languages (1)

#### Keywords

- index (13)
- boundary value problems (12)
- elliptic operators (9)
- Fredholm property (8)
- cluster expansion (8)
- K-theory (7)
- manifolds with singularities (7)
- pseudodifferential operators (7)
- relative index (6)
- Atiyah-Patodi-Singer theory (5)

#### Institute

- Institut für Mathematik (474)
- Extern (13)
- Mathematisch-Naturwissenschaftliche Fakultät (12)
- Institut für Informatik und Computational Science (3)
- Institut für Philosophie (3)
- Historisches Institut (2)
- Institut für Biochemie und Biologie (2)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (2)
- Präsident | Vizepräsidenten (2)
- Strukturbereich Kognitionswissenschaften (2)

We study mixed boundary value problems for an elliptic operator A on a manifold X with boundary Y, i.e., Au = f in int X, T (+/-) u = g(+/-) on int Y+/-, where Y is subdivided into subsets Y+/- with an interface Z and boundary conditions T+/- on Y+/- that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume that Z subset of Y is a manifold with conical singularity v. As an example we consider the Zaremba problem, where A is the Laplacian and T- Dirichlet, T+ Neumann conditions. The problem is treated as a corner boundary value problem near v which is the new point and the main difficulty in this paper. Outside v the problem belongs to the edge calculus as is shown in Bull. Sci. Math. ( to appear). With a mixed problem we associate Fredholm operators in weighted corner Sobolev spaces with double weights, under suitable edge conditions along Z {v} of trace and potential type. We construct parametrices within the calculus and establish the regularity of solutions.

We introduce an abstract concept of quantum field theory on categories fibered in groupoids over the category of spacetimes. This provides us with a general and flexible framework to study quantum field theories defined on spacetimes with extra geometric structures such as bundles, connections and spin structures. Using right Kan extensions, we can assign to any such theory an ordinary quantum field theory defined on the category of spacetimes and we shall clarify under which conditions it satisfies the axioms of locally covariant quantum field theory. The same constructions can be performed in a homotopy theoretic framework by using homotopy right Kan extensions, which allows us to obtain first toy-models of homotopical quantum field theories resembling some aspects of gauge theories.

In a recent paper, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.

This paper is concerned with localization properties of coherent states. Instead of classical uncertainty relations we consider "generalized" localization quantities. This is done by introducing measures on the reproducing kernel. In this context we may prove the existence of optimally localized states. Moreover, we provide a numerical scheme for deriving them.

The aim of this paper is to express the Conley-Zehnder index of a symplectic path in terms of an index due to Leray and which has been studied by one of us in a previous work. This will allow us to prove a formula for the Conley-Zehnder index of the product of two symplectic paths in terms of a symplectic Cayley transform. We apply our results to a rigorous study of the Weyl representation of metaplectic operators, which plays a crucial role in the understanding of semiclassical quantization of Hamiltonian systems exhibiting chaotic behavior.

We prove the existence of sectors of minimal growth for general closed extensions of elliptic cone operators under natural ellipticity conditions. This is achieved by the construction of a suitable parametrix and reduction to the boundary. Special attention is devoted to the clarification of the analytic structure of the resolvent.

Special p-forms are forms which have components fµ1…µp equal to +1, -1 or 0 in some orthonormal basis. A p-form ϕ ∈ pRd is called democratic if the set of nonzero components {ϕμ1...μp} is symmetric under the transitive action of a subgroup of O(d,Z) on the indices {1, . . . , d}. Knowledge of these symmetry groups allows us to define mappings of special democratic p-forms in d dimensions to special democratic P-forms in D dimensions for successively higher P = p and D = d. In particular, we display a remarkable nested structure of special forms including a U(3)-invariant 2-form in six dimensions, a G2-invariant 3-form in seven dimensions, a Spin(7)-invariant 4-form in eight dimensions and a special democratic 6-form O in ten dimensions. The latter has the remarkable property that its contraction with one of five distinct bivectors, yields, in the orthogonal eight dimensions, the Spin(7)-invariant 4-form. We discuss various properties of this ten dimensional form.