## 510 Mathematik

### Refine

#### Year of publication

#### Document Type

- Preprint (373)
- Article (261)
- Doctoral Thesis (75)
- Postprint (45)
- Monograph/Edited Volume (13)
- Other (10)
- Master's Thesis (6)
- Part of a Book (5)
- Conference Proceeding (5)
- Review (3)

#### Language

- English (750)
- German (46)
- French (3)
- Multiple languages (1)

#### Keywords

- random point processes (18)
- statistical mechanics (18)
- stochastic analysis (18)
- index (14)
- boundary value problems (12)
- Fredholm property (10)
- regularization (10)
- cluster expansion (9)
- elliptic operators (9)
- data assimilation (8)

#### Institute

- Institut für Mathematik (737)
- Extern (14)
- Mathematisch-Naturwissenschaftliche Fakultät (14)
- Institut für Physik und Astronomie (13)
- Hasso-Plattner-Institut für Digital Engineering gGmbH (7)
- Institut für Biochemie und Biologie (6)
- Institut für Informatik und Computational Science (5)
- Department Psychologie (4)
- Department Grundschulpädagogik (3)
- Hasso-Plattner-Institut für Digital Engineering GmbH (3)

The past three decades of policy process studies have seen the emergence of a clear intellectual lineage with regard to complexity. Implicitly or explicitly, scholars have employed complexity theory to examine the intricate dynamics of collective action in political contexts. However, the methodological counterparts to complexity theory, such as computational methods, are rarely used and, even if they are, they are often detached from established policy process theory. Building on a critical review of the application of complexity theory to policy process studies, we present and implement a baseline model of policy processes using the logic of coevolving networks. Our model suggests that an actor's influence depends on their environment and on exogenous events facilitating dialogue and consensus-building. Our results validate previous opinion dynamics models and generate novel patterns. Our discussion provides ground for further research and outlines the path for the field to achieve a computational turn.

Instruments for measuring the absorbed dose and dose rate under radiation exposure, known as radiation dosimeters, are indispensable in space missions. They are composed of radiation sensors that generate current or voltage response when exposed to ionizing radiation, and processing electronics for computing the absorbed dose and dose rate. Among a wide range of existing radiation sensors, the Radiation Sensitive Field Effect Transistors (RADFETs) have unique advantages for absorbed dose measurement, and a proven record of successful exploitation in space missions. It has been shown that the RADFETs may be also used for the dose rate monitoring. In that regard, we propose a unique design concept that supports the simultaneous operation of a single RADFET as absorbed dose and dose rate monitor. This enables to reduce the cost of implementation, since the need for other types of radiation sensors can be minimized or eliminated. For processing the RADFET's response we propose a readout system composed of analog signal conditioner (ASC) and a self-adaptive multiprocessing system-on-chip (MPSoC). The soft error rate of MPSoC is monitored in real time with embedded sensors, allowing the autonomous switching between three operating modes (high-performance, de-stress and fault-tolerant), according to the application requirements and radiation conditions.

In this work we consider the first encounter problems between a fixed and/or mobile target A and a moving trap B on Bethe lattices and Cayley trees. The survival probabilities (SPs) of the target A on the both kinds of structures are considered analytically and compared. On Bethe lattices, the results show that the fixed target will still prolong its survival time, whereas, on Cayley trees, there are some initial positions where the target should move to prolong its survival time. The mean first encounter time (MFET) for mobile target A is evaluated numerically and compared with the mean first passage time (MFPT) for the fixed target A. Different initial settings are addressed and clear boundaries are obtained. These findings are helpful for optimizing the strategy to prolong the survival time of the target or to speed up the search process on Cayley trees, in relation to the target's movement and the initial position configuration of the two walkers. We also present a new method, which uses a small amount of memory, for simulating random walks on Cayley trees. (C) 2020 Elsevier B.V. All rights reserved.

An instance of the marriage problem is given by a graph G = (A boolean OR B, E), together with, for each vertex of G, a strict preference order over its neighbors. A matching M of G is popular in the marriage instance if M does not lose a head-to-head election against any matching where vertices are voters. Every stable matching is a min-size popular matching; another subclass of popular matchings that always exists and can be easily computed is the set of dominant matchings. A popular matching M is dominant if M wins the head-to-head election against any larger matching. Thus, every dominant matching is a max-size popular matching, and it is known that the set of dominant matchings is the linear image of the set of stable matchings in an auxiliary graph. Results from the literature seem to suggest that stable and dominant matchings behave, from a complexity theory point of view, in a very similar manner within the class of popular matchings. The goal of this paper is to show that there are instead differences in the tractability of stable and dominant matchings and to investigate further their importance for popular matchings. First, we show that it is easy to check if all popular matchings are also stable; however, it is co-NP hard to check if all popular matchings are also dominant. Second, we show how some new and recent hardness results on popular matching problems can be deduced from the NP-hardness of certain problems on stable matchings, also studied in this paper, thus showing that stable matchings can be employed to show not only positive results on popular matchings (as is known) but also most negative ones. Problems for which we show new hardness results include finding a min-size (resp., max-size) popular matching that is not stable (resp., dominant). A known result for which we give a new and simple proof is the NP-hardness of finding a popular matching when G is nonbipartite.

The Levenberg–Marquardt regularization for the backward heat equation with fractional derivative
(2022)

The backward heat problem with time-fractional derivative in Caputo's sense is studied. The inverse problem is severely ill-posed in the case when the fractional order is close to unity. A Levenberg-Marquardt method with a new a posteriori stopping rule is investigated. We show that optimal order can be obtained for the proposed method under a Hölder-type source condition. Numerical examples for one and two dimensions are provided.

Congenital adrenal hyperplasia (CAH) is the most common form of adrenal insufficiency in childhood; it requires cortisol replacement therapy with hydrocortisone (HC, synthetic cortisol) from birth and therapy monitoring for successful treatment. In children, the less invasive dried blood spot (DBS) sampling with whole blood including red blood cells (RBCs) provides an advantageous alternative to plasma sampling.
Potential differences in binding/association processes between plasma and DBS however need to be considered to correctly interpret DBS measurements for therapy monitoring. While capillary DBS samples would be used in clinical practice, venous cortisol DBS samples from children with adrenal insufficiency were analyzed due to data availability and to directly compare and thus understand potential differences between venous DBS and plasma. A previously published HC plasma pharmacokinetic (PK) model was extended by leveraging these DBS concentrations.
In addition to previously characterized binding of cortisol to albumin (linear process) and corticosteroid-binding globulin (CBG; saturable process), DBS data enabled the characterization of a linear cortisol association with RBCs, and thereby providing a quantitative link between DBS and plasma cortisol concentrations. The ratio between the observed cortisol plasma and DBS concentrations varies highly from 2 to 8. Deterministic simulations of the different cortisol binding/association fractions demonstrated that with higher blood cortisol concentrations, saturation of cortisol binding to CBG was observed, leading to an increase in all other cortisol binding fractions.
In conclusion, a mathematical PK model was developed which links DBS measurements to plasma exposure and thus allows for quantitative interpretation of measurements of DBS samples.

In this article we prove upper bounds for the Laplace eigenvalues lambda(k) below the essential spectrum for strictly negatively curved Cartan-Hadamard manifolds. Our bound is given in terms of k(2) and specific geometric data of the manifold. This applies also to the particular case of non-compact manifolds whose sectional curvature tends to -infinity, where no essential spectrum is present due to a theorem of Donnelly/Li. The result stands in clear contrast to Laplacians on graphs where such a bound fails to be true in general.

Diffusion maps is a manifold learning algorithm widely used for dimensionality reduction. Using a sample from a distribution, it approximates the eigenvalues and eigenfunctions of associated Laplace-Beltrami operators. Theoretical bounds on the approximation error are, however, generally much weaker than the rates that are seen in practice. This paper uses new approaches to improve the error bounds in the model case where the distribution is supported on a hypertorus. For the data sampling (variance) component of the error we make spatially localized compact embedding estimates on certain Hardy spaces; we study the deterministic (bias) component as a perturbation of the Laplace-Beltrami operator's associated PDE and apply relevant spectral stability results. Using these approaches, we match long-standing pointwise error bounds for both the spectral data and the norm convergence of the operator discretization. We also introduce an alternative normalization for diffusion maps based on Sinkhorn weights. This normalization approximates a Langevin diffusion on the sample and yields a symmetric operator approximation. We prove that it has better convergence compared with the standard normalization on flat domains, and we present a highly efficient rigorous algorithm to compute the Sinkhorn weights.

Our input is a complete graph G on n vertices where each vertex has a strict ranking of all other vertices in G. The goal is to construct a matching in G that is popular. A matching M is popular if M does not lose a head-to-head election against any matching M ': here each vertex casts a vote for the matching in {M,M '} in which it gets a better assignment. Popular matchings need not exist in the given instance G and the popular matching problem is to decide whether one exists or not. The popular matching problem in G is easy to solve for odd n. Surprisingly, the problem becomes NP-complete for even n, as we show here. This is one of the few graph theoretic problems efficiently solvable when n has one parity and NP-complete when n has the other parity.

We establish a new approach of treating elliptic boundary value problems (BVPs) on manifolds with boundary and regular corners, up to singularity order 2. Ellipticity and parametrices are obtained in terms of symbols taking values in algebras of BVPs on manifolds of corresponding lower singularity orders. Those refer to Boutet de Monvel's calculus of operators with the transmission property, see Boutet de Monvel (Acta Math 126:11-51, 1971) for the case of smooth boundary. On corner configuration operators act in spaces with multiple weights. We mainly study the case of upper left entries in the respective 2 x 2 operator block-matrices of such a calculus. Green operators in the sense of Boutet de Monvel (Acta Math 126:11-51, 1971) analogously appear in singular cases, and they are complemented by contributions of Mellin type. We formulate a result on ellipticity and the Fredholm property in weighted corner spaces, with parametrices of analogous kind.