• Treffer 5 von 10
Zurück zur Trefferliste

On the question of the need for a built-in potential in Perovskite solar cells

  • Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-inPerovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Oskar J. SandbergORCiD, Jona KurpiersORCiDGND, Martin StolterfohtORCiD, Dieter NeherORCiDGND, Paul MeredithORCiD, Safa ShoaeeORCiDGND, Ardalan ArminORCiD
DOI:https://doi.org/10.1002/admi.202000041
ISSN:2196-7350
Titel des übergeordneten Werks (Englisch):Advanced materials interfaces
Verlag:Wiley
Verlagsort:Hoboken
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:20.03.2020
Erscheinungsjahr:2020
Datum der Freischaltung:30.03.2023
Freies Schlagwort / Tag:built-in potential; charge collection; charge transport layers; perovskite solar cells
Band:7
Ausgabe:10
Aufsatznummer:2000041
Seitenanzahl:8
Fördernde Institution:Ser Cymru Program through the European Regional Development Fund; Welsh; European Funding Office; Alexander von Humboldt FoundationAlexander von; Humboldt Foundation; Swansea University strategic initiative in; Sustainable Advanced Materials; EPSRCUK Research & Innovation; (UKRI)Engineering & Physical Sciences Research Council (EPSRC); [EP/N020863/1] Funding Source: UKRI
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.