• Treffer 12 von 24720
Zurück zur Trefferliste

POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier-Stokes equations

  • We present a Reduced Order Model (ROM) which exploits recent developments in Physics Informed Neural Networks (PINNs) for solving inverse problems for the Navier-Stokes equations (NSE). In the proposed approach, the presence of simulated data for the fluid dynamics fields is assumed. A POD-Galerkin ROM is then constructed by applying POD on the snapshots matrices of the fluid fields and performing a Galerkin projection of the NSE (or the modified equations in case of turbulence modeling) onto the POD reduced basis. A POD-Galerkin PINN ROM is then derived by introducing deep neural networks which approximate the reduced outputs with the input being time and/or parameters of the model. The neural networks incorporate the physical equations (the POD-Galerkin reduced equations) into their structure as part of the loss function. Using this approach, the reduced model is able to approximate unknown parameters such as physical constants or the boundary conditions. A demonstration of the applicability of the proposed ROM is illustrated byWe present a Reduced Order Model (ROM) which exploits recent developments in Physics Informed Neural Networks (PINNs) for solving inverse problems for the Navier-Stokes equations (NSE). In the proposed approach, the presence of simulated data for the fluid dynamics fields is assumed. A POD-Galerkin ROM is then constructed by applying POD on the snapshots matrices of the fluid fields and performing a Galerkin projection of the NSE (or the modified equations in case of turbulence modeling) onto the POD reduced basis. A POD-Galerkin PINN ROM is then derived by introducing deep neural networks which approximate the reduced outputs with the input being time and/or parameters of the model. The neural networks incorporate the physical equations (the POD-Galerkin reduced equations) into their structure as part of the loss function. Using this approach, the reduced model is able to approximate unknown parameters such as physical constants or the boundary conditions. A demonstration of the applicability of the proposed ROM is illustrated by three cases which are the steady flow around a backward step, the flow around a circular cylinder and the unsteady turbulent flow around a surface mounted cubic obstacle.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Saddam HijaziORCiD, Melina A. FreitagORCiDGND, Niels LandwehrORCiDGND
DOI:https://doi.org/10.1186/s40323-023-00242-2
ISSN:2213-7467
Titel des übergeordneten Werks (Englisch):Advanced modeling and simulation in engineering sciences : AMSES
Verlag:SpringerOpen
Verlagsort:Berlin
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:18.03.2023
Erscheinungsjahr:2023
Datum der Freischaltung:21.06.2024
Freies Schlagwort / Tag:Inverse problems; Navier-Stokes equations; Physics-based machine learning; Proper orthogonal decomposition
Band:10
Ausgabe:1
Aufsatznummer:5
Seitenanzahl:38
Fördernde Institution:Projekt DEAL; Jacobi Fellowship at the University of Potsdam; Deutsche; Forschungsgemeinschaft (DFG) [318763901 -SFB1294]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer Review:Referiert
Publikationsweg:Open Access / Gold Open-Access
DOAJ gelistet
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.