• Treffer 1 von 295
Zurück zur Trefferliste

Geometry controlled anomalous diffusion in random fractal geometries

  • We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and theWe investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law ∼T−h with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr980.pdfeng
    (7886KB)

    SHA-512:f808dd3362c86e0d4888e63c9dcd1c0c684f9b71c764afa09a2e775ffddda4d43a69a984169f13256ff96b59e366bdc9f29be6b2893a95cc43ebc4a074a3321f

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Yousof MardoukhiORCiDGND, Jae-Hyung Jeon, Ralf MetzlerORCiDGND
URN:urn:nbn:de:kobv:517-opus4-474864
DOI:https://doi.org/10.25932/publishup-47486
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Untertitel (Englisch):looking beyond the infinite cluster
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (980)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:27.08.2020
Erscheinungsjahr:2015
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:27.08.2020
Freies Schlagwort / Tag:mechanisms; models; motion; nonergodicity; plasma-membrane
Ausgabe:980
Seitenanzahl:16
Erste Seite:30134
Letzte Seite:30147
Quelle:Physical Chemistry Chemical Physics 17 (2015) 44, 30134-30147 DOI:10.1039/C5CP03548A
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Englisch):License LogoCreative Commons - Namensnennung 3.0 Unported
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Externe Anmerkung:This article is a part of this cumulative dissertation
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.