• search hit 3 of 7
Back to Result List

Wings of the butterfly

  • The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Sporer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30 degrees-45 degrees) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20 degrees-30 degrees) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2 degrees-10 degrees) showThe spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Sporer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30 degrees-45 degrees) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20 degrees-30 degrees) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2 degrees-10 degrees) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:R. Leussu, IIlya G. UsoskinORCiD, Senthamizh Pavai ValliappanORCiD, Andrea DierckeORCiDGND, Rainer ArltGND, Carsten DenkerORCiDGND, K. Mursula
DOI:https://doi.org/10.1051/0004-6361/201629533
ISSN:1432-0746
Title of parent work (English):Astronomy and astrophysics : an international weekly journal
Subtitle (English):sunspot groups for 1826-2015
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Date of first publication:2017/03/14
Publication year:2017
Release date:2022/06/17
Tag:Sun: activity; history and philosophy of astronomy; sunspots
Volume:599
Number of pages:8
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.