• Treffer 4 von 14
Zurück zur Trefferliste

Revisit of Nonlinear Landau Damping for Electrostatic Instability Driven by Blazar-induced Pair Beams

  • We revisit the effect of nonlinear Landau (NL) damping on the electrostatic instability of blazar-induced pair beams, using a realistic pair-beam distribution. We employ a simplified 2D model in k-space to study the evolution of the electric-field spectrum and to calculate the relaxation time of the beam. We demonstrate that the 2D model is an adequate representation of the 3D physics. We find that nonlinear Landau damping, once it operates efficiently, transports essentially the entire wave energy to small wave numbers where wave driving is weak or absent. The relaxation time also strongly depends on the intergalactic medium temperature, T-IGM, and for T-IGM << 10 eV, and in the absence of any other damping mechanism, the relaxation time of the pair beam is longer than the inverse Compton (IC) scattering time. The weak late-time beam energy losses arise from the accumulation of wave energy at small k, that nonlinearly drains the wave energy at the resonant k of the pair-beam instability. Any other dissipation process operating atWe revisit the effect of nonlinear Landau (NL) damping on the electrostatic instability of blazar-induced pair beams, using a realistic pair-beam distribution. We employ a simplified 2D model in k-space to study the evolution of the electric-field spectrum and to calculate the relaxation time of the beam. We demonstrate that the 2D model is an adequate representation of the 3D physics. We find that nonlinear Landau damping, once it operates efficiently, transports essentially the entire wave energy to small wave numbers where wave driving is weak or absent. The relaxation time also strongly depends on the intergalactic medium temperature, T-IGM, and for T-IGM << 10 eV, and in the absence of any other damping mechanism, the relaxation time of the pair beam is longer than the inverse Compton (IC) scattering time. The weak late-time beam energy losses arise from the accumulation of wave energy at small k, that nonlinearly drains the wave energy at the resonant k of the pair-beam instability. Any other dissipation process operating at small k would reduce that wave-energy drain and hence lead to stronger pair-beam energy losses. As an example, collisions reduce the relaxation time by an order of magnitude, although their rate is very small. Other nonlinear processes, such as the modulation instability, could provide additional damping of the nonresonant waves and dramatically reduce the relaxation time of the pair beam. An accurate description of the spectral evolution of the electrostatic waves is crucial for calculating the relaxation time of the pair beam.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Sergei VafinORCiDGND, Pranab Jyoti DekaORCiD, Martin PohlORCiDGND, Artem BohdanORCiDGND
DOI:https://doi.org/10.3847/1538-4357/ab017b
ISSN:0004-637X
ISSN:1538-4357
Titel des übergeordneten Werks (Englisch):The astrophysical journal : an international review of spectroscopy and astronomical physics
Verlag:IOP Publ. Ltd.
Verlagsort:Bristol
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:27.02.2019
Erscheinungsjahr:2019
Datum der Freischaltung:25.03.2021
Freies Schlagwort / Tag:gamma rays: general; instabilities; magnetic fields; relativistic processes; waves
Band:873
Ausgabe:1
Seitenanzahl:12
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.