• Treffer 1 von 1
Zurück zur Trefferliste

Supervised learning from noisy observations

  • Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research data-assimilation has been successfully used to optimally combine forecast models and their inherent uncertainty with incoming noisy observations. The key idea in our work here is to achieve increased forecast capabilities by judiciously combining machine-learning algorithms and data assimilation. We combine the physics-agnostic data -driven approach of random feature maps as a forecast model within an ensemble Kalman filter data assimilation procedure. The machine-learning model is learned sequentially by incorporating incoming noisy observations. We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained. Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles forData-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research data-assimilation has been successfully used to optimally combine forecast models and their inherent uncertainty with incoming noisy observations. The key idea in our work here is to achieve increased forecast capabilities by judiciously combining machine-learning algorithms and data assimilation. We combine the physics-agnostic data -driven approach of random feature maps as a forecast model within an ensemble Kalman filter data assimilation procedure. The machine-learning model is learned sequentially by incorporating incoming noisy observations. We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained. Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn effective model closure in multi-scale systems. (C) 2021 Elsevier B.V. All rights reserved.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Georg A. GottwaldORCiDGND, Sebastian ReichORCiDGND
DOI:https://doi.org/10.1016/j.physd.2021.132911
ISSN:0167-2789
ISSN:1872-8022
Titel des übergeordneten Werks (Englisch):Physica : D, Nonlinear phenomena
Untertitel (Englisch):Combining machine-learning techniques with data assimilation
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:01.09.2021
Erscheinungsjahr:2021
Datum der Freischaltung:06.09.2023
Freies Schlagwort / Tag:Data assimilation; Data-driven modelling; Random feature maps
Band:423
Aufsatznummer:132911
Seitenanzahl:15
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG, German Science Foundation)German Research Foundation (DFG) [SFB 1294/1 - 318763901]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.