The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 9
Back to Result List

Imprints of the first billion years

  • Lyman limit systems (LLSs) trace the low-density circumgalactic medium and the most dense regions of the intergalactic medium, so their number density and evolution at high-redshift, just after reionization, are important to constrain. We present a survey for LLSs at high redshifts, z(LLS) = 3.5-5.4, in the homogeneous data set of 153 optical quasar spectra at z similar to 5 from the Giant Gemini GMOS survey. Our analysis includes detailed investigation of survey biases using mock spectra which provide important corrections to the raw measurements. We estimate the incidence of LLSs per unit redshift at z approximate to 4.4 to be l(z) = 2.6 +/- 0.4. Combining our results with previous surveys at z(LLS) < 4, the best-fit power-law evolution is l(z) = l(*)[(1 + z)/4](alpha) with l* = 1.46 +/- 0.11 and alpha = 1.70 +/- 0.22 (68 per cent confidence intervals). Despite hints in previous z(LLS) < 4 results, there is no indication for a deviation from this single power-law soon after reionization. Finally, we integrate our new results withLyman limit systems (LLSs) trace the low-density circumgalactic medium and the most dense regions of the intergalactic medium, so their number density and evolution at high-redshift, just after reionization, are important to constrain. We present a survey for LLSs at high redshifts, z(LLS) = 3.5-5.4, in the homogeneous data set of 153 optical quasar spectra at z similar to 5 from the Giant Gemini GMOS survey. Our analysis includes detailed investigation of survey biases using mock spectra which provide important corrections to the raw measurements. We estimate the incidence of LLSs per unit redshift at z approximate to 4.4 to be l(z) = 2.6 +/- 0.4. Combining our results with previous surveys at z(LLS) < 4, the best-fit power-law evolution is l(z) = l(*)[(1 + z)/4](alpha) with l* = 1.46 +/- 0.11 and alpha = 1.70 +/- 0.22 (68 per cent confidence intervals). Despite hints in previous z(LLS) < 4 results, there is no indication for a deviation from this single power-law soon after reionization. Finally, we integrate our new results with previous surveys of the intergalactic and circumgalactic media to constrain the hydrogen column density distribution function, f(N-HI, X), over 10 orders ofmagnitude. The data at z similar to 5 are not well-described by the f(N-HI, X) model previously reported for z similar to 2-3 (after re-scaling) and a 7-pivot model fitting the full z similar to 2-5 data set is statistically unacceptable. We conclude that there is significant evolution in the shape of f(N-HI, X) over this similar to 2-billion-year period.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Neil H. M. CrightonORCiD, J. Xavier Prochaska, Michael T. MurphyORCiD, Gabor WorseckORCiD, Britton D. SmithORCiD
DOI:https://doi.org/10.1093/mnras/sty2762
ISSN:0035-8711
ISSN:1365-2966
Title of parent work (English):Monthly notices of the Royal Astronomical Society
Subtitle (English):Lyman limit systems at z similar to 5
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2021/05/28
Tag:cosmological parameters; cosmology: observations; quasars: absorption lines
Volume:482
Issue:2
Number of pages:15
First page:1456
Last Page:1470
Funding institution:Australian Research CouncilAustralian Research Council [DP130100568]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.