• Treffer 4 von 6
Zurück zur Trefferliste

On the behavior of rainfall maxima at the eastern Andes

  • In this study, we detect high percentile rainfall events in the eastern central Andes, based on Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25 × 0.25°, a temporal resolution of 3 h, and for the duration from 2001 to 2018. We identify three areas with high mean accumulated rainfall and analyze their atmospheric behaviour and rainfall characteristics with specific focus on extreme events. Extreme events are defined by events above the 95th percentile of their daily mean accumulated rainfall. Austral summer (DJF) is the period of the year presenting the most frequent extreme events over these three regions. Daily statistics show that the spatial maxima, as well as their associated extreme events, are produced during the night. For the considered period, ERA-Interim reanalysis data, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) with 0.75° x0.75° spatial and 6-hourly temporal resolutions, were used for the analysis of the meso- and synoptic-scale atmospheric patterns. Night- andIn this study, we detect high percentile rainfall events in the eastern central Andes, based on Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25 × 0.25°, a temporal resolution of 3 h, and for the duration from 2001 to 2018. We identify three areas with high mean accumulated rainfall and analyze their atmospheric behaviour and rainfall characteristics with specific focus on extreme events. Extreme events are defined by events above the 95th percentile of their daily mean accumulated rainfall. Austral summer (DJF) is the period of the year presenting the most frequent extreme events over these three regions. Daily statistics show that the spatial maxima, as well as their associated extreme events, are produced during the night. For the considered period, ERA-Interim reanalysis data, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) with 0.75° x0.75° spatial and 6-hourly temporal resolutions, were used for the analysis of the meso- and synoptic-scale atmospheric patterns. Night- and day-time differences indicate a nocturnal overload of northerly and northeasterly low-level humidity flows arriving from tropical South America. Under these conditions, cooling descending air from the mountains may find unstable air at the surface, giving place to the development of strong local convection. Another possible mechanism is presented here: a forced ascent of the low-level flow due to the mountains, disrupting the atmospheric stratification and generating vertical displacement of air trajectories. A Principal Component Analysis (PCA) in T-mode is applied to day- and night-time data during the maximum and extreme events. The results show strong correlation areas over each subregion under study during night-time, whereas during day-time no defined patterns are found. This confirms the observed nocturnal behavior of rainfall within these three hotspots.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Rodrigo HierroORCiD, Y. Burgos Fonseca, Maryam Ramezani ZiaraniORCiD, P. Llamedo, Torsten SchmidtORCiD, Alejandro de la TorreORCiD, P. Alexander
DOI:https://doi.org/10.1016/j.atmosres.2019.104792
ISSN:0169-8095
Titel des übergeordneten Werks (Deutsch):Atmospheric Research
Verlag:Elsevier
Verlagsort:Amsterdam [u.a.]
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:06.08.2019
Erscheinungsjahr:2019
Datum der Freischaltung:02.09.2020
Freies Schlagwort / Tag:South-America; TRMM; circulation; climate; monsoon; part I; precipitation; rainy-season; summer; systems
Band:234
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Externe Anmerkung:This article is a part of this cumulative dissertation
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.