• Treffer 4 von 5
Zurück zur Trefferliste

Scaling up nanoplasmon catalysis

  • Nanoscale heating by optical excitation of plasmonic nanoparticles offers a new perspective of controlling chemical reactions, where heat is not spatially uniform as in conventional macroscopic heating but strong temperature gradients exist around microscopic hot spots. In nanoplasmonics, metal particles act as a nanosource of light, heat, and energetic electrons driven by resonant excitation of their localized surface plasmon resonance. As an example of the coupling reaction of 4-nitrothiophenol into 4,4′-dimercaptoazobenzene, we show that besides the nanoscopic heat distribution at hot spots, the microscopic distribution of heat dictated by the spot size of the light focus also plays a crucial role in the design of plasmonic nanoreactors. Small sizes of laser spots enable high intensities to drive plasmon-assisted catalysis. This facilitates the observation of such reactions by surface-enhanced Raman scattering, but it challenges attempts to scale nanoplasmonic chemistry up to large areas, where the excess heat must be dissipated byNanoscale heating by optical excitation of plasmonic nanoparticles offers a new perspective of controlling chemical reactions, where heat is not spatially uniform as in conventional macroscopic heating but strong temperature gradients exist around microscopic hot spots. In nanoplasmonics, metal particles act as a nanosource of light, heat, and energetic electrons driven by resonant excitation of their localized surface plasmon resonance. As an example of the coupling reaction of 4-nitrothiophenol into 4,4′-dimercaptoazobenzene, we show that besides the nanoscopic heat distribution at hot spots, the microscopic distribution of heat dictated by the spot size of the light focus also plays a crucial role in the design of plasmonic nanoreactors. Small sizes of laser spots enable high intensities to drive plasmon-assisted catalysis. This facilitates the observation of such reactions by surface-enhanced Raman scattering, but it challenges attempts to scale nanoplasmonic chemistry up to large areas, where the excess heat must be dissipated by one-dimensional heat transport.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Radwan Mohamed SarhanORCiDGND, Wouter-Willem Adriaan KoopmanORCiDGND, Jan-Etienne PudellORCiDGND, Felix SteteORCiD, Matthias RössleGND, Marc HerzogORCiDGND, Clemens Nikolaus Zeno SchmittORCiDGND, Ferenc LiebigGND, Joachim KoetzORCiDGND, Matias BargheerORCiDGND
DOI:https://doi.org/10.1021/acs.jpcc.8b12574
ISSN:1932-7447
Titel des übergeordneten Werks (Englisch):The journal of physical chemistry : C, Nanomaterials and interfaces
Untertitel (Englisch):the role of heat dissipation
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:11.03.2019
Erscheinungsjahr:2019
Datum der Freischaltung:05.03.2021
Freies Schlagwort / Tag:Gold; Irradiation; Lasers; Raman spectroscopy; Silicon
Band:123
Ausgabe:14
Seitenanzahl:6
Erste Seite:9352
Letzte Seite:9357
Fördernde Institution:DFG via the School of Analytical Science Adlershof (SALSA)
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.