• Treffer 1 von 11
Zurück zur Trefferliste

Numerical simulations of dark matter admixed neutron star binaries

  • Multi-messenger observations of compact binary mergers provide a new way to constrain the nature of dark matter that may accumulate in and around neutron stars. In this article, we extend the infrastructure of our numerical-relativity code BAM to enable the simulation of neutron stars that contain an additional mirror dark matter component. We perform single star tests to verify our code and the first binary neutron star simulations of this kind. We find that the presence of dark matter reduces the lifetime of the merger remnant and favors a prompt collapse to a black hole. Furthermore, we find differences in the merger time for systems with the same total mass and mass ratio, but different amounts of dark matter. Finally, we find that electromagnetic signals produced by the merger of binary neutron stars admixed with dark matter are very unlikely to be as bright as their dark matter-free counterparts. Given the increased sensitivity of multi-messenger facilities, our analysis gives a new perspective on how to probe the presence ofMulti-messenger observations of compact binary mergers provide a new way to constrain the nature of dark matter that may accumulate in and around neutron stars. In this article, we extend the infrastructure of our numerical-relativity code BAM to enable the simulation of neutron stars that contain an additional mirror dark matter component. We perform single star tests to verify our code and the first binary neutron star simulations of this kind. We find that the presence of dark matter reduces the lifetime of the merger remnant and favors a prompt collapse to a black hole. Furthermore, we find differences in the merger time for systems with the same total mass and mass ratio, but different amounts of dark matter. Finally, we find that electromagnetic signals produced by the merger of binary neutron stars admixed with dark matter are very unlikely to be as bright as their dark matter-free counterparts. Given the increased sensitivity of multi-messenger facilities, our analysis gives a new perspective on how to probe the presence of dark matter.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Mattia EmmaORCiD, Federico SchianchiORCiD, Francesco PannaraleORCiD, Violetta SagunORCiD, Tim DietrichORCiDGND
DOI:https://doi.org/10.3390/particles5030024
ISSN:2571-712X
Titel des übergeordneten Werks (Englisch):Particles
Verlag:MDPI
Verlagsort:Basel
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:22.07.2022
Erscheinungsjahr:2022
Datum der Freischaltung:11.12.2023
Freies Schlagwort / Tag:dark matter; equation of state;; gravitational-wave astronomy; multi-messenger astrophysics; neutron stars; numerical relativity
Band:5
Ausgabe:3
Seitenanzahl:14
Erste Seite:273
Letzte Seite:286
Fördernde Institution:FCT (Fundacao para a Ciencia e Tecnologia I.P, Portugal); [EXPL/FIS-AST/0735/2021, UID/FIS/FIS/04564/2020, UIDP/04564/2020,; UIDB/04564/2020]; national supercomputer HPE Apollo Hawk at the High; Performance Computing (HPC) Center Stuttgart (HLRS) [GWanalysis/44189];; HPC systems Lise/Emmy of the North German Supercomputing Alliance (HLRN); [bbp00049]; Minerva cluster of the Max Planck Institute for; Gravitational Physics; GCS Supercomputer SuperMUC at Leibniz; Supercomputing Centre (LRZ) [pn29ba]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Gold Open-Access
DOAJ gelistet
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.