• search hit 10 of 10
Back to Result List

Observed binary populations reflect the Galactic history

  • Context. Wide hot subdwarf B (sdB) binaries with main-sequence companions are outcomes of stable mass transfer from evolved red giants. The orbits of these binaries show a strong correlation between their orbital periods and mass ratios. The origins of this correlation have, so far, been lacking a conclusive explanation. Aims. We aim to find a binary evolution model which can explain the observed correlation. Methods. Radii of evolved red giants, and hence the resulting orbital periods, strongly depend on their metallicity. We performed a small but statistically significant binary population synthesis study with the binary stellar evolution code MESA. We used a standard model for binary mass loss and a standard metallicity history of the Galaxy. The resulting sdB systems were selected based on the same criteria as was used in observations and then compared with the observed population. Results. We have achieved an excellent match to the observed period-mass ratio correlation without explicitly fine-tuning anyContext. Wide hot subdwarf B (sdB) binaries with main-sequence companions are outcomes of stable mass transfer from evolved red giants. The orbits of these binaries show a strong correlation between their orbital periods and mass ratios. The origins of this correlation have, so far, been lacking a conclusive explanation. Aims. We aim to find a binary evolution model which can explain the observed correlation. Methods. Radii of evolved red giants, and hence the resulting orbital periods, strongly depend on their metallicity. We performed a small but statistically significant binary population synthesis study with the binary stellar evolution code MESA. We used a standard model for binary mass loss and a standard metallicity history of the Galaxy. The resulting sdB systems were selected based on the same criteria as was used in observations and then compared with the observed population. Results. We have achieved an excellent match to the observed period-mass ratio correlation without explicitly fine-tuning any parameters. Furthermore, our models produce a very good match to the observed period-metallicity correlation. We predict several new correlations, which link the observed sdB binaries to their progenitors, and a correlation between the orbital period, metallicity, and core mass for subdwarfs and young low-mass helium white dwarfs. We also predict that sdB binaries have distinct orbital properties depending on whether they formed in the Galactic bulge, thin or thick disc, or the halo. Conclusions We demonstrate, for the first time, how the metallicity history of the Milky Way is imprinted in the properties of the observed post-mass transfer binaries. We show that Galactic chemical evolution is an important factor in binary population studies of interacting systems containing at least one evolved low-mass (M-init< 1.6 M-circle dot) component. Finally, we provide an observationally supported model of mass transfer from low-mass red giants onto main-sequence stars.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Joris VosORCiD, Alexey BobrickORCiD, Maja VuckovicORCiD
DOI:https://doi.org/10.1051/0004-6361/201937195
ISSN:1432-0746
Title of parent work (English):Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)
Subtitle (English):explaining the orbital period-mass ratio relation in wide hot subdwarf binaries
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Date of first publication:2020/09/25
Publication year:2020
Release date:2023/10/10
Tag:Galaxy: evolution; binaries: spectroscopic; stars: evolution; stars: mass-loss; subdwarfs
Volume:641
Article number:A163
Number of pages:19
Funding institution:Alexander von Humboldt Foundation Alexander von Humboldt Foundation
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.