Asymptotic spectral analysis and tunnelling for a class of difference operators

Asymptotische Spektralanalyse und Tunneleffekt für eine Klasse von Differenzen-Operatoren

  • We analyze the asymptotic behavior in the limit epsilon to zero for a wide class of difference operators H_epsilon = T_epsilon + V_epsilon with underlying multi-well potential. They act on the square summable functions on the lattice (epsilon Z)^d. We start showing the validity of an harmonic approximation and construct WKB-solutions at the wells. Then we construct a Finslerian distance d induced by H and show that short integral curves are geodesics and d gives the rate for the exponential decay of Dirichlet eigenfunctions. In terms of this distance, we give sharp estimates for the interaction between the wells and construct the interaction matrix.
  • Wir analysieren das asymptotische Verhalten im Grenzwert epsilon gegen null von einer weiten Klasse von Differenzen operatoren H_epsilon = T_epsilon + V_epsilon mit unterliegendem Potential. Sie wirken auf die quadrat-summierbaren Funktionen auf dem Gitter (epsilon Z)^d. Zunächst zeigen wir die Gültigkeit einer harmonischen Approximation und konstruieren WKB-Lösungen an den Töpfen. Dann konstruieren wir eine Finslersche Abstandsfunktion d, die durch H induziert wird und zeigen, daß kurze Integralkurven Geodäten sind und daß d die Rate des exponentiellen Abfallverhaltens von Dirichlet-Eigenfunktionen beschreibt. Bezügliche dieses Abstands geben wir scharfe Abschätzungen für die Wechselwirkung zwischen den Töpfen und konstruieren die Wechselwirkungs-Matrix.

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elke RosenbergerORCiD
URN:urn:nbn:de:kobv:517-opus-7393
Supervisor(s):Markus Klein
Publication type:Doctoral Thesis
Language:English
Publication year:2006
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2006/05/26
Release date:2006/06/02
Tag:Differenzenoperator; Finsler-Abstand; Kontinuumsgrenzwert; Pseudodifferentialoperatoren auf dem Torus; Semi-klasische Abschätzung
Finsler-distance; difference operator; scaled lattice; semi-classical spectral estimates; tunneling
GND Keyword:Mathematische Physik; Operatortheorie; Generalized translation operator; Tunneleffekt; Spektraltheorie; Asymptotische Entwicklung
RVK - Regensburg classification:SK 540
RVK - Regensburg classification:SK 620
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.