• Treffer 4 von 11
Zurück zur Trefferliste

Consequences of ex situ cultivation of plants genetic diversity, fitness and adaptation of the monocarpic Cynoglossum officinale L. in botanic gardens

  • Ex situ collections in botanic gardens have great potential in contributing to the conservation of rare plants. However, little is known about the effects of cultivation on the genetic diversity and fitness of garden populations, about genetic changes due to unconscious selection and potential adaptation to the artificial conditions. We compared the genetic variability and fitness of the rare, short-lived perennial Cynoglossum officinale from 12 botanic gardens and five natural populations in Germany. Genetic variability was assessed with eight nuclear microsatellites. Plants were grown in a common garden and performance was measured over 2 years. Mean genetic diversity was very similar in botanic garden and natural populations. However, four of the garden populations exhibited no genetic variability at all. Moreover, the genetic diversity of garden populations decreased with increasing duration of cultivation, indicating genetic drift. Plant performance from natural and garden populations in terms of growth, flowering and seedEx situ collections in botanic gardens have great potential in contributing to the conservation of rare plants. However, little is known about the effects of cultivation on the genetic diversity and fitness of garden populations, about genetic changes due to unconscious selection and potential adaptation to the artificial conditions. We compared the genetic variability and fitness of the rare, short-lived perennial Cynoglossum officinale from 12 botanic gardens and five natural populations in Germany. Genetic variability was assessed with eight nuclear microsatellites. Plants were grown in a common garden and performance was measured over 2 years. Mean genetic diversity was very similar in botanic garden and natural populations. However, four of the garden populations exhibited no genetic variability at all. Moreover, the genetic diversity of garden populations decreased with increasing duration of cultivation, indicating genetic drift. Plant performance from natural and garden populations in terms of growth, flowering and seed production was similar and in garden populations only seed mass was strongly related to genetic diversity. Several lines of evidence indicated genetic changes in garden populations in response to cultivation. Seed dormancy was strongly reduced in garden populations, and in response to nutrient addition garden plants increased the size of their main inflorescence, while wild plants increased the number of inflorescences. These changes could be maladaptive in nature and reduce the suitability of garden populations as a source for reintroductions. We suggest that botanic gardens should pay more attention to the problem of potential genetic changes in their plant collections.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Andreas Ensslin, Tobias M. Sandner, Diethart Matthies
DOI:https://doi.org/10.1016/j.biocon.2010.09.001
ISSN:0006-3207
Titel des übergeordneten Werks (Englisch):: an international journal
Verlag:Elsevier
Verlagsort:Oxford
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2011
Erscheinungsjahr:2011
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:Boraginaceae; Genetic drift; Microsatellites; Seed dormancy; Unconscious selection
Band:144
Ausgabe:1
Seitenanzahl:7
Erste Seite:272
Letzte Seite:278
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.