The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 673
Back to Result List

Transient permeability in porous and fractured sandstones mediated by fluid-rock interactions

Permeabilitätsveränderungen in porösen und geklüfteten Sandsteinen als Folge von Fluid-Gesteins-Wechselwirkungen

  • Understanding the fluid transport properties of subsurface rocks is essential for a large number of geotechnical applications, such as hydrocarbon (oil/gas) exploitation, geological storage (CO2/fluids), and geothermal reservoir utilization. To date, the hydromechanically-dependent fluid flow patterns in porous media and single macroscopic rock fractures have received numerous investigations and are relatively well understood. In contrast, fluid-rock interactions, which may permanently affect rock permeability by reshaping the structure and changing connectivity of pore throats or fracture apertures, need to be further elaborated. This is of significant importance for improving the knowledge of the long-term evolution of rock transport properties and evaluating a reservoir’ sustainability. The thesis focuses on geothermal energy utilization, e.g., seasonal heat storage in aquifers and enhanced geothermal systems, where single fluid flow in porous rocks and rock fracture networks under various pressure and temperature conditionsUnderstanding the fluid transport properties of subsurface rocks is essential for a large number of geotechnical applications, such as hydrocarbon (oil/gas) exploitation, geological storage (CO2/fluids), and geothermal reservoir utilization. To date, the hydromechanically-dependent fluid flow patterns in porous media and single macroscopic rock fractures have received numerous investigations and are relatively well understood. In contrast, fluid-rock interactions, which may permanently affect rock permeability by reshaping the structure and changing connectivity of pore throats or fracture apertures, need to be further elaborated. This is of significant importance for improving the knowledge of the long-term evolution of rock transport properties and evaluating a reservoir’ sustainability. The thesis focuses on geothermal energy utilization, e.g., seasonal heat storage in aquifers and enhanced geothermal systems, where single fluid flow in porous rocks and rock fracture networks under various pressure and temperature conditions dominates. In this experimental study, outcrop samples (i.e., Flechtinger sandstone, an illite-bearing Lower Permian rock, and Fontainebleau sandstone, consisting of pure quartz) were used for flow-through experiments under simulated hydrothermal conditions. The themes of the thesis are (1) the investigation of clay particle migration in intact Flechtinger sandstone and the coincident permeability damage upon cyclic temperature and fluid salinity variations; (2) the determination of hydro-mechanical properties of self-propping fractures in Flechtinger and Fontainebleau sandstones with different fracture features and contrasting mechanical properties; and (3) the investigation of the time-dependent fracture aperture evolution of Fontainebleau sandstone induced by fluid-rock interactions (i.e., predominantly pressure solution). Overall, the thesis aims to unravel the mechanisms of the instantaneous reduction (i.e., direct responses to thermo-hydro-mechanical-chemical (THMC) conditions) and progressively-cumulative changes (i.e., time-dependence) of rock transport properties. Permeability of intact Flechtinger sandstone samples was measured under each constant condition, where temperature (room temperature up to 145 °C) and fluid salinity (NaCl: 0 ~ 2 mol/l) were stepwise changed. Mercury intrusion porosimetry (MIP), electron microprobe analysis (EMPA), and scanning electron microscopy (SEM) were performed to investigate the changes of local porosity, microstructures, and clay element contents before and after the experiments. The results indicate that the permeability of illite-bearing Flechtinger sandstones will be impaired by heating and exposure to low salinity pore fluids. The chemically induced permeability variations prove to be path-dependent concerning the applied succession of fluid salinity changes. The permeability decay induced by a temperature increase and a fluid salinity reduction operates by relatively independent mechanisms, i.e., thermo-mechanical and thermo-chemical effects. Further, the hydro-mechanical investigations of single macroscopic fractures (aligned, mismatched tensile fractures, and smooth saw-cut fractures) illustrate that a relative fracture wall offset could significantly increase fracture aperture and permeability, but the degree of increase depends on fracture surface roughness. X-ray computed tomography (CT) demonstrates that the contact area ratio after the pressure cycles is inversely correlated to the fracture offset. Moreover, rock mechanical properties, determining the strength of contact asperities, are crucial so that relatively harder rock (i.e., Fontainebleau sandstone) would have a higher self-propping potential for sustainable permeability during pressurization. This implies that self-propping rough fractures with a sufficient displacement are efficient pathways for fluid flow if the rock matrix is mechanically strong. Finally, two long-term flow-through experiments with Fontainebleau sandstone samples containing single fractures were conducted with an intermittent flow (~140 days) and continuous flow (~120 days), respectively. Permeability and fluid element concentrations were measured throughout the experiments. Permeability reduction occurred at the beginning stage when the stress was applied, while it converged at later stages, even under stressed conditions. Fluid chemistry and microstructure observations demonstrate that pressure solution governs the long-term fracture aperture deformation, with remarkable effects of the pore fluid (Si) concentration and the structure of contact grain boundaries. The retardation and the cessation of rock fracture deformation are mainly induced by the contact stress decrease due to contact area enlargement and a dissolved mass accumulation within the contact boundaries. This work implies that fracture closure under constant (pressure/stress and temperature) conditions is likely a spontaneous process, especially at the beginning stage after pressurization when the contact area is relatively small. In contrast, a contact area growth yields changes of fracture closure behavior due to the evolution of contact boundaries and concurrent changes in their diffusive properties. Fracture aperture and thus permeability will likely be sustainable in the long term if no other processes (e.g., mineral precipitations in the open void space) occur.show moreshow less
  • Die Kenntnis von Gesteinstransporteigenschaften und das Verständnis ihrer zeitlichen Veränderungen sind für eine Vielzahl von geotechnischen Anwendungen von herausragender Bedeutung. Als Beispiele seien genannt: die Gewinnung von Kohlenwasserstoffen (Öl/Gas), die stoffliche geologische Speicherung (CO2/Fluide) und die geothermische Energiegewinnung. Die hydromechanischen Strömungseigenschaften von Fluiden in porösen Gesteinen und solchen mit einzelnen, makroskopischen Rissen sind mittlerweile vergleichsweise gut verstanden. Im Gegensatz dazu besteht im Hinblick auf Fluid-Gesteins-Wechselwirkungen, welche durch eine Veränderung der Struktur und Verbundenheit des Porenraums bzw. der Rissöffnungsweiten die Gesteinspermeabilität permanent beeinflussen können, entscheidender Forschungsbedarf. Dies ist insbesondere für eine verbesserte Kenntnis der langzeitlichen Entwicklung der (hydraulischen) Gesteinstransporteigenschaften sowie eine Evaluierung der Nachhaltigkeit einer Nutzung geologischer Reservoire von großer Bedeutung und GegenstandDie Kenntnis von Gesteinstransporteigenschaften und das Verständnis ihrer zeitlichen Veränderungen sind für eine Vielzahl von geotechnischen Anwendungen von herausragender Bedeutung. Als Beispiele seien genannt: die Gewinnung von Kohlenwasserstoffen (Öl/Gas), die stoffliche geologische Speicherung (CO2/Fluide) und die geothermische Energiegewinnung. Die hydromechanischen Strömungseigenschaften von Fluiden in porösen Gesteinen und solchen mit einzelnen, makroskopischen Rissen sind mittlerweile vergleichsweise gut verstanden. Im Gegensatz dazu besteht im Hinblick auf Fluid-Gesteins-Wechselwirkungen, welche durch eine Veränderung der Struktur und Verbundenheit des Porenraums bzw. der Rissöffnungsweiten die Gesteinspermeabilität permanent beeinflussen können, entscheidender Forschungsbedarf. Dies ist insbesondere für eine verbesserte Kenntnis der langzeitlichen Entwicklung der (hydraulischen) Gesteinstransporteigenschaften sowie eine Evaluierung der Nachhaltigkeit einer Nutzung geologischer Reservoire von großer Bedeutung und Gegenstand der vorliegenden Dissertation. Anwendungsaspekt dieser Arbeit ist insbesondere die geothermische Technologieentwicklung, d.h. die saisonale Wärmespeicherung in Aquiferen sowie sogenannte „Enhanced Geothermal Systems“, in der die Nutzung einphasiger Fluide in porösen Gesteinen bzw. Rissnetzwerken im Vordergrund steht. In dieser experimentellen Arbeit wurden mit Gesteinsproben aus Aufschlüssen (unterpermischer, illitreicher Flechtinger Sandstein sowie quarzreicher Fontainebleau Sandstein) Durchflussexperimente bei simulierten hydrothermalen Reservoirbedingungen durchgeführt. Themenschwerpunkte der Dissertation sind hierbei (1) die Untersuchung einer Tonpartikelmigration in intakten Proben des Flechtinger Sandsteins und eine damit verbundene Permeabilitätsschädigung durch zyklische Temperaturveränderungen sowie Variationen der Fluidsalinität, (2) die Bestimmung der hydromechanischen Eigenschaften selbststützender Risse in Flechtinger und Fontainbleau Sandsteinen mit unterschiedlichen Rissmorphologien und mechanischen Kennwerten und (3) die Untersuchung einer zeitlichen Veränderung der Rissöffnungsweiten in Fontainebleau Sandstein, welche durch Fluid-Gesteins-Wechselwirkungen (insbesondere Drucklösung) induziert wird. Zusammenfassend hat diese Dissertation zum Ziel, die Mechanismen sowohl unmittelbarer als auch zeitabhängiger, durch veränderte thermisch-hydraulisch-mechanisch-chemische Bedingungen hervorgerufene, Veränderungen von Gesteinstransporteigenschaften herauszuarbeiten. Die Permeabilität intakter Proben Flechtinger Sandsteins wurde systematisch bei stufenweise veränderten Temperaturen (von Raumtemperatur bis 145 °C) und Fluidsalinitäten (NaCl: 0 ~ 2 mol/l) gemessen. Quecksilberporosimetrie, Elektronenstrahlmikroanalyse und Rasterelektronenmikroskopie wurden angewandt, um Veränderungen der lokalen Porosität, der Gesteinsmikrostruktur sowie des Tongehalts nach Abschluss des Experiments im Vergleich zum Ausgangszustand zu bestimmen. Es zeigte sich, dass die Permeabilität des illitreichen Flechtinger Sandsteins durch eine Temperaturerhöhung sowie eine Verringerung der Salinität des Porenfluids geschädigt wird. Die chemisch induzierten Permeabilitätsveränderungen sind pfadabhängig von der Abfolge der Salinitätsveränderungen. Die Mechanismen einer durch Temperaturerhöhung oder Salinitätsreduktion induzierten Permeabilitätsschädigung arbeiten hierbei weitestgehend unabhängig voneinander, als thermo-mechanische bzw. thermo-chemische Prozesse. Die hydromechanischen Untersuchungen an makroskopischen Einzelrissen (Scherrisse ohne und mit Versatz sowie gesägte Proben) zeigen, dass ein relativer Versatz der beiden Rissflächen eine erhebliche Erhöhung der Rissöffnungsweite und damit der Gesteinspermeabilität bewirken kann, deren Grad aber stark von der Oberflächenrauigkeit abhängt. Computertomographische Aufnahmen des Gesteins zeigen, dass das Kontaktflächenverhältnis nach den erfolgten Druckzyklen invers mit dem Scherversatz korreliert. Darüber hinaus haben die mechanischen Eigenschaften des jeweiligen Gesteins, welche die Festigkeit der Kontaktpunkte innerhalb des Risses bestimmen, einen entscheidenden Einfluss auf die Selbststützungsfähigkeit des Risses bei einer Druckerhöhung. Diese ist damit (höhere Festigkeit) bei Fontainebleau Sandstein gegenüber Flechtinger Sandstein verbessert. Insgesamt stellen selbststützende raue Risse mit ausreichendem Scherversatz in einem Gestein hoher Festigkeit effiziente Fließwege für Geofluide dar. Die zwei Langzeitexperimente an geklüftetem Fontainebleau Sandstein wurden mit intermittierender (~140 Tage) bzw. kontinuierlicher (~120 Tage) Durchströmung durchgeführt und die Permeabilität des Gesteins sowie der Fluidchemismus über die Dauer des jeweiligen Experiments bestimmt. Eine Permeabilitätsreduktion war insbesondere am Anfang der Messung zu beobachten, nachdem die Spannung erstmalig auf das Gestein aufgebracht wurde, und nahm dann im weiteren Verlauf des Experiments progressiv ab. Fluidchemische und mikrostrukturelle Beobachtungen zeigen, dass Drucklösung die langzeitliche Deformation des Risses kontrolliert, wobei die Porenfluidkonzentration (Si) und die Mikrostruktur der Kontaktpunkte eine herausragende Rolle spielen. Die Verlangsamung bzw. das Abklingen der Rissdeformation werden insbesondere durch die Verringerung der Kontaktspannung aufgrund einer Kontaktflächenvergrößerung sowie die Anreicherung gelöster Spezies in den Kontakten bestimmt. Ergebnis dieser Arbeit ist auch die Erkenntnis, dass eine Rissschließung bei konstanten Druck/Spannungs- und Temperaturbedingungen sehr wahrscheinlich ein spontan ablaufender Prozess ist, insbesondere zu Beginn einer Druckbeaufschlagung, wenn die Kontaktfläche noch relativ klein ist. Eine Vergrößerung der Kontaktfläche führt zu einem veränderten Rissschließungsverhalten, da die Kontaktpunkte einer strukturellen Entwicklung unterworfen sind und sich damit ihre diffusiven Eigenschaften ändern. Über längere Zeiträume werden die Rissöffnungsweite und damit die Gesteinspermeabilität in einem geologischen Reservoir insbesondere dann nachhaltig sein, wenn keine zusätzlichen, entgegenwirkenden Prozesse (z.B. Mineralfällung innerhalb des Risses) in dem Gestein ablaufen.show moreshow less

Download full text files

  • SHA-512:1daa8725f33fd72c96b3b90f33ea33bd5f4d9d670e3ea014d2e096a64ed88f2ed303e4ce5d814485da5872aff0e69c4079905642ce52f205d55986d8840fb90d

Export metadata

Metadaten
Author details:Chaojie ChengORCiDGND
URN:urn:nbn:de:kobv:517-opus4-510124
DOI:https://doi.org/10.25932/publishup-51012
Supervisor(s):Michael Kühn, Christoph Hilgers, Uwe Altenberger
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/06/29
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/05/03
Release date:2021/06/29
Tag:Drucklösungsprozesse; Fluid-Gesteinswechselwirkungen; Fluidströmung; Permeabilität; Riss; Sandstein
fluid flow; fluid-rock interactions; permeability; pressure solution; rock fracture; sandstones
Number of pages:XIV, 148
RVK - Regensburg classification:TI 8100, UT 3100
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
CCS classification:A. General Literature
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
MSC classification:74-XX MECHANICS OF DEFORMABLE SOLIDS / 74-05 Experimental work
76-XX FLUID MECHANICS (For general continuum mechanics, see 74Axx, or other parts of 74-XX) / 76Sxx Flows in porous media; filtration; seepage
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.