• search hit 2 of 2
Back to Result List

Finite fault earthquake source inversions

Ausgedehnte Erdbebenquellinversion

  • Earthquake modeling is the key to a profound understanding of a rupture. Its kinematics or dynamics are derived from advanced rupture models that allow, for example, to reconstruct the direction and velocity of the rupture front or the evolving slip distribution behind the rupture front. Such models are often parameterized by a lattice of interacting sub-faults with many degrees of freedom, where, for example, the time history of the slip and rake on each sub-fault are inverted. To avoid overfitting or other numerical instabilities during a finite-fault estimation, most models are stabilized by geometric rather than physical constraints such as smoothing. As a basis for the inversion approach of this study, we build on a new pseudo-dynamic rupture model (PDR) with only a few free parameters and a simple geometry as a physics-based solution of an earthquake rupture. The PDR derives the instantaneous slip from a given stress drop on the fault plane, with boundary conditions on the developing crack surface guaranteed at all times viaEarthquake modeling is the key to a profound understanding of a rupture. Its kinematics or dynamics are derived from advanced rupture models that allow, for example, to reconstruct the direction and velocity of the rupture front or the evolving slip distribution behind the rupture front. Such models are often parameterized by a lattice of interacting sub-faults with many degrees of freedom, where, for example, the time history of the slip and rake on each sub-fault are inverted. To avoid overfitting or other numerical instabilities during a finite-fault estimation, most models are stabilized by geometric rather than physical constraints such as smoothing. As a basis for the inversion approach of this study, we build on a new pseudo-dynamic rupture model (PDR) with only a few free parameters and a simple geometry as a physics-based solution of an earthquake rupture. The PDR derives the instantaneous slip from a given stress drop on the fault plane, with boundary conditions on the developing crack surface guaranteed at all times via a boundary element approach. As a side product, the source time function on each point on the rupture plane is not constraint and develops by itself without additional parametrization. The code was made publicly available as part of the Pyrocko and Grond Python packages. The approach was compared with conventional modeling for different earthquakes. For example, for the Mw 7.1 2016 Kumamoto, Japan, earthquake, the effects of geometric changes in the rupture surface on the slip and slip rate distributions could be reproduced by simply projecting stress vectors. For the Mw 7.5 2018 Palu, Indonesia, strike-slip earthquake, we also modelled rupture propagation using the 2D Eikonal equation and assuming a linear relationship between rupture and shear wave velocity. This allowed us to give a deeper and faster propagating rupture front and the resulting upward refraction as a new possible explanation for the apparent supershear observed at the Earth's surface. The thesis investigates three aspects of earthquake inversion using PDR: (1) to test whether implementing a simplified rupture model with few parameters into a probabilistic Bayesian scheme without constraining geometric parameters is feasible, and whether this leads to fast and robust results that can be used for subsequent fast information systems (e.g., ground motion predictions). (2) To investigate whether combining broadband and strong-motion seismic records together with near-field ground deformation data improves the reliability of estimated rupture models in a Bayesian inversion. (3) To investigate whether a complex rupture can be represented by the inversion of multiple PDR sources and for what type of earthquakes this is recommended. I developed the PDR inversion approach and applied the joint data inversions to two seismic sequences in different tectonic settings. Using multiple frequency bands and a multiple source inversion approach, I captured the multi-modal behaviour of the Mw 8.2 2021 South Sandwich subduction earthquake with a large, curved and slow rupturing shallow earthquake bounded by two faster and deeper smaller events. I could cross-validate the results with other methods, i.e., P-wave energy back-projection, a clustering analysis of aftershocks and a simple tsunami forward model. The joint analysis of ground deformation and seismic data within a multiple source inversion also shed light on an earthquake triplet, which occurred in July 2022 in SE Iran. From the inversion and aftershock relocalization, I found indications for a vertical separation between the shallower mainshocks within the sedimentary cover and deeper aftershocks at the sediment-basement interface. The vertical offset could be caused by the ductile response of the evident salt layer to stress perturbations from the mainshocks. The applications highlight the versatility of the simple PDR in probabilistic seismic source inversion capturing features of rather different, complex earthquakes. Limitations, as the evident focus on the major slip patches of the rupture are discussed as well as differences to other finite fault modeling methods.show moreshow less
  • Erdbebenmodelle sind der Schlüssel zu einem detaillierten Verständnis der zugrunde liegenden Bruchprozesse. Die kinematischen oder dynamischen Brucheigenschaften werden mit Hilfe von ausgedehnten Bruchmodellen bestimmt. Dadurch können Details, wie z.B. die Bruchrichtung und -geschwindigkeit oder die Verschiebungsverteilung, aufgelöst werden. Häufig sind ausgedehnte Bruchmodelle durch sehr viele freie Parameter definiert, etwa individuelle Verschiebungen und Verschiebungsrichtungen auf den diskretisierten Bruchflächenelementen. Die große Anzahl an Parametern sorgt dafür, dass Inversionsprobleme hochgradig unterbestimmt sind. Um daraus resultierende numerische Instabilitäten zu verhinden, werden diese Modelle häufig mit zusätzlichen eher geometrischen als physikalischen Annahmen stabilisiert, z.B. im Bezug auf die Rauigkeit der Verschiebung auf der Bruchfläche. Die Basis für die Inversionsmethode in dieser Dissertaton bildet das von uns entwickelete pseudo-dynamische Bruchmodel (PDR). Die PDR basiert auf wenigen freien Parametern undErdbebenmodelle sind der Schlüssel zu einem detaillierten Verständnis der zugrunde liegenden Bruchprozesse. Die kinematischen oder dynamischen Brucheigenschaften werden mit Hilfe von ausgedehnten Bruchmodellen bestimmt. Dadurch können Details, wie z.B. die Bruchrichtung und -geschwindigkeit oder die Verschiebungsverteilung, aufgelöst werden. Häufig sind ausgedehnte Bruchmodelle durch sehr viele freie Parameter definiert, etwa individuelle Verschiebungen und Verschiebungsrichtungen auf den diskretisierten Bruchflächenelementen. Die große Anzahl an Parametern sorgt dafür, dass Inversionsprobleme hochgradig unterbestimmt sind. Um daraus resultierende numerische Instabilitäten zu verhinden, werden diese Modelle häufig mit zusätzlichen eher geometrischen als physikalischen Annahmen stabilisiert, z.B. im Bezug auf die Rauigkeit der Verschiebung auf der Bruchfläche. Die Basis für die Inversionsmethode in dieser Dissertaton bildet das von uns entwickelete pseudo-dynamische Bruchmodel (PDR). Die PDR basiert auf wenigen freien Parametern und einer simplen, planaren Geometrie und ergibt eine physik-gestützte Lösung für Erdbebenbrüche. Die PDR bestimmt die instantane Verschiebung basierend auf gegebenen Spannungsänderungen auf der Bruchfläche. Die Randbedingung der Spannungsänderung wird dabei zu jedem Zeitpunkt der Bruchentwicklung über eine Randelementmethode eingehalten. Als Nebenprodukt dessen kann die Herdzeitfunktion an jedem Punkt der Bruchfläche als Ergebnis des Models bestimmt werden, und muss daher nicht vorher definiert werden. Der PDR-Modellierungsansatz wurde mit anderen Modellen anhand verschiedener Erdbeben verglichen. Am Beispiel des Mw 7,1 2016 Kumamoto, Japan, Bebens konnte der Effekt einer gekrümmten Bruchfläche auf die daraus resultierenden Verschiebungsverteilung und Verschiebungsraten durch eine Projezierung der Spannungsvektoren reproduziert werden. Für das Mw 7,5 2018 Palu, Indonesien, Beben haben wir die Bruchausbreitung auf Grundlage der 2D-Eikonalgleichung und basierend auf einem angenommenen linearen Zusammenhang zwischen Bruch- und Scherwellengeschwindigkeit modelliert. Dadurch konnten wir die beobachtete Supershear-Bruchausbreitung als Ergebnis einer möglichen tiefen und daher schnelleren Bruchfront mit einer Abstrahlung an die Erdoberfläche erklären. Der PDR-Vorwärtsmodellierungs-Code wurde in den Open-Source Python Paketen Pyrocko und Grond veröffentlicht. Meine Dissertation beleuchtet drei Aspekte der Erdbebeninversion unter Zuhilfenahme der PDR: (1) Ist eine Implementation eines simplen Bruchmodels mit wenigen Parametern in ein probabalistisches Bayesisches Inversionsprogramm möglich? Kann dies schnelle und robuste Ergebnisse für weitere Folgeanwendungen, wie Bodenbeschleunigungsvorhersagen, liefern? (2) Wie hilft die Kombination aus seismischen Breitband- und Accelerometerdaten mit Nahfelddeformationsdaten, Inversionsergebnisse mit der PDR zu verbessern? (3) Können komplexe Brüche über einen multiplen PDR-Quellinversionsansatz aufgelöst werden und wenn ja, wann ist dies möglich? Ich habe den PDR-Inversionsansatz entwickelt und auf zwei Erdbeben-Sequenzen in verschiedenen tektonischen Umgebungen angewandt. Mit Hilfe von verschiedenen Datensätzen in mehreren Frequenzbändern innerhalb von einfachen und multiplen Bruchflächeninversionen konnte ich das multi-modale Mw 8,2 2021 South Sandwich Erdbeben characterisieren. Dieses bestand aus einem langen, flachen, langsam brechenden Beben entlang der gekrümmten Subduktionszone, welches durch zwei kleinere, tiefere Brüche mit schnelleren Bruchgeschwindigkeiten begrenzt wurde. Die Validierung mit Ergebnissen aus einer P-Wellen Back-Projection, der Clusteranalyse von Nachbeben und einer Tsunami-Modelierung zeigten eine hohe Konsistenz mit den PDR-Resultaten. Die Kombination von seismischen Daten und Oberflächendeformationen in einer multiplen PDR-Inversion habe ich auch zur Analyse eines Beben-Triplets vom Juni 2022 im Südosten des Irans genutzt. Die Inversionen konnten im Zusammenspiel mit relokalisierten Nachbeben einen neuen Fall von vertikaler Haupt-/Nachbebenseparation auflösen. Während die großen Hauptbeben im flachen Sediment stattfanden, sind die Nachbeben hauptsächlich entlang der tieferen Grenzfläche zwischen Sediment und kristallinem Grundgebirge aufgetreten. Eine Erklärung dafür ist das duktile Fließen einer vorhandenen Salzschicht auf der Grenzfläche, ausgelöst durch Spannungsänderungen im Zuge der Hauptbeben. Die Anwendungen konnten die Vielseitigkeit der PDR als simples Quellmodel innerhalb von seismischen Quellinversionen zeigen. Limitierungen der Inversion, wie der augenscheinliche Fokus auf den Hauptverschiebungsbereich eines Bebens, werden in dieser Arbeit genauso diskutiert wie die Einordnung der PDR im Vergleich zu anderen ausgedehnten Quellmodellen.show moreshow less

Download full text files

  • SHA-512:1eaaf341aa00c40f1b18bda2654fdaceccda514515475d5b5aed1c474e96cbb22f17f9f99f28e779788c0bd94202900f44e44f8f43da4685f69e422fc0711dd1

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Malte MetzORCiDGND
URN:urn:nbn:de:kobv:517-opus4-619745
DOI:https://doi.org/10.25932/publishup-61974
Subtitle (English):implementation and testing of a novel physics-based rupture model
Subtitle (German):Implementierung und Validierung eines neuen selbst-ähnlichen Bruchmodels
Reviewer(s):Torsten DahmORCiDGND, Martin ValléeORCiD, Sigurjón JónssonORCiDGND
Supervisor(s):Torsten Dahm, Frank Krüger
Publication type:Doctoral Thesis
Language:English
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/11/24
Release date:2024/01/02
Tag:Bruchmodel; Inversion; Seismologie
inversion; seismology; source model
Number of pages:143
RVK - Regensburg classification:UT 1800
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Extern / Extern
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
MSC classification:86-XX GEOPHYSICS [See also 76U05, 76V05]
License (German):License LogoCC-BY-NC - Namensnennung, nicht kommerziell 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.