• search hit 2 of 3
Back to Result List

Experiments on oscillator ensembles with global nonlinear coupling

  • We experimentally analyze collective dynamics of a population of 20 electronic Wien-bridge limit-cycle oscillators with a nonlinear phase-shifting unit in the global feedback loop. With an increase in the coupling strength we first observe formation and then destruction of a synchronous cluster, so that the dependence of the order parameter on the coupling strength is not monotonic. After destruction of the cluster the ensemble remains nevertheless coherent, i.e., it exhibits an oscillatory collective mode (mean field). We show that the system is now in a self-organized quasiperiodic state, predicted in Rosenblum and Pikovsky [Phys. Rev. Lett. 98, 064101 (2007)]. In this state, frequencies of all oscillators are smaller than the frequency of the mean field, so that the oscillators are not locked to the mean field they create and their dynamics is quasiperiodic. Without a nonlinear phase-shifting unit, the system exhibits a standard Kuramoto-like transition to a fully synchronous state. We demonstrate a good correspondence between theWe experimentally analyze collective dynamics of a population of 20 electronic Wien-bridge limit-cycle oscillators with a nonlinear phase-shifting unit in the global feedback loop. With an increase in the coupling strength we first observe formation and then destruction of a synchronous cluster, so that the dependence of the order parameter on the coupling strength is not monotonic. After destruction of the cluster the ensemble remains nevertheless coherent, i.e., it exhibits an oscillatory collective mode (mean field). We show that the system is now in a self-organized quasiperiodic state, predicted in Rosenblum and Pikovsky [Phys. Rev. Lett. 98, 064101 (2007)]. In this state, frequencies of all oscillators are smaller than the frequency of the mean field, so that the oscillators are not locked to the mean field they create and their dynamics is quasiperiodic. Without a nonlinear phase-shifting unit, the system exhibits a standard Kuramoto-like transition to a fully synchronous state. We demonstrate a good correspondence between the experiment and previously developed theory. We also propose a simple measure which characterizes the macroscopic incoherence-coherence transition in a finite-size ensemble.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Amirkhan A. Temirbayev, Zeinulla Zh. Zhanabaev, Stanislav B. Tarasov, Vladimir I. Ponomarenko, Michael RosenblumORCiDGND
DOI:https://doi.org/10.1103/PhysRevE.85.015204
ISSN:1539-3755
Title of parent work (English):Physical review : E, Statistical, nonlinear and soft matter physics
Publisher:American Physical Society
Place of publishing:College Park
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:85
Issue:1
Number of pages:4
Funding institution:RFFI [12-02-00377]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.